PRODUCT 70/140H-8 series

TAIYO -- Parker

 \mathbf{C}

Standard built-in high-performance cushion – 70/140H-8 series

Enhanced cushioning effect to keep up with high-speed machines. Identical mounting dimensions to those of 70/140H-7 series that are field-proven for long years (conform to JIS standards)

Enhanced cushioning function has reduced shocks occurring when actuator stops.

G-value after inrush into cushion (inrush speed 400 mm/s)

Cushion ring

- The optimization of the groove profile has improved cushioning performance (compared with 70/140H-7).
- The cushion ring with the U-shape groove which features little change in the performance of the cushion stroke regardless of fluctuation in oil temperature.

Time required for cushion stroke against cushion valve speed

Cushion valve opening

AX211 (2-wire, 2-LED type) The red LED (detecting range), and the green LED (optimum position) light u

> AX101 (2-wire) The indicator lamp can be easily seen from rear side as well as from front side.

The adoption of switches common to other series permits the substantial

• The lighting status of the switch can be checked with wide range.

reduction of the kinds of maintenance switches.

■ Range of bore applicable to 70/140H-8R with switch

	Rod A	Rod B	Rod C							
Single Rod	φ40~φ125	ф32~ф140	φ40~φ140							
Double Rod		φ32~φ140	φ40~φ140							
* The rod A with switch has been standardized										

* The rods B and C of a ϕ 140 bore have been standardized.

Cushion valve

- The improved structure that the cushion valve is hard to come off even when the screws are excessively slackened at adjustment for more reliable security.
- The structure that is convenient for speed fine tuning during the cushion stroke
- Added gaskets made of fluoric rubber (as well as the check plug)

Suggestion of new hydraulic cylinder era

• Standard built-in high-performance cushion • Products conforming to JIS standards nting dimensions identical to those of 70/140H-7 series)

Common switches

•Enhanced safety countermeasures

Succeeded features of 70/140H-7

Applicable to highly frequent use

To meet requests for the highly frequent use under high loads, the rods B and C have been specialized, and the weary strength of the piston rods has been improved.

Simple structure

The bush part and bush holder of the rod C type have been discontinued with production. The bush, of which structure has been simplified, has been specialized in the rod C.

Easier disassembly and assembly

The housing shape of the cylinder tube and cover seal part has been modified for easier disassembly and assembly

Improved sealing performance of air vent plug

The sealing of the air vent part (also used as the check plug) has been changed to the canned hydrogenated nitrile rubber for more reliable sealing after air vent.

Improved durability

Superior abrasion-proof copper alloy is adopted as bush material to improve the bush durability.

TAIYO CAD/DATA reflects customers' requests.

TAIYO is currently supplying the third CAD/DATA that has been improved to reflect customers' various requests.

The improvement in the second CAD/DATA, comparing with the first CAD/DATA was centered on the operation performance, while the retrieving performance was stressed in the development of the third CAD/DATA, comparing with the second CAD/DATA.

Features of TAIYO CAD/DATA

1. Less number of the factors (data capacity) constructing the diagrams of products

The diagrams of products comprise the minimum factors necessary for machine design. Therefore, the influences on the all diagrams (influences on the data capacity) have been reduced even if the products' CAD/DATA are used on the diagram of the machine.

The non-use of ellipses and spline curves limits the increase of the factors even when data conversion is performed.

Application for CAD/DATA

2. Less number of diagrams (files)

The diagrams of products are classified into the models to reduce the number of files for easier file management and less labor in data conversion.

Date of entry:

The CAD/DATA is available with no charge. If you request for the CAD/DATA, fill the application form below, and contact your nearest TAIYO sales office.

Application Form of TAIYO Series CAD/DATA

Company name				Our remarks		
				Charge sales office		
Department, section				Sales office code		
Official position				Person in charge		
Name				7		
Address						
	ZIP CODE	TEL	F	AX		
E-mail						
Your CAD	CAD system (software)	Name	Ver.	Manufacturer		
system	Computer model (hardware)	Name		Manufacturer		
	Required data	DXF				
supplying		Others				
5 1 1 2	Supplying modium	CD-ROM				
	Supplying medium	Others				
Supplier of our products	Company name					

"MICRO CADAM" is the registered trademark of which exclusive right for use is owned by CADAMSYSTEMS CO.
 "AUTO CAD" is the registered trademark of Autodesk, Inc. in the U.S.A.

• "DXF File" is the public data format of Autodesk, Inc. in the U.S.A.

For safe use

For safe use ····· 7

Inappropriate handling of the products may lead to the unreliable performance or serious accidents. In order to prevent any accident, be sure to read carefully this catalogue, and fully understand the contents for safe handling.

Remember that your special attention must be paid to the messages with the words "DANGER", "WARNING", "CAUTION", and "NOTES". Non-observance of these messages may pose dangers to operators or machines. These are important safety messages and require your strict observance, adding to ISO4413, JIS B 8361 and other safety rules.

Related laws and rules

- ISO 4413 : Hydraulic fluid power-General rules for the application of equipment to transmission and control systems
- JIS B 8361 : General rules for hydraulic system
- JIS B 8354: Double acting hydraulic cylinder
- JIS B 8367: Hydraulic cylinder, mounting dimensions
- High-pressure gas preservation law
- · Labor safety and hygiene law
- Fire laws
- JIS B 8243: Structure of pressure container
- NAS 1638 : Classification of contamination particles levels

Instructions in this catalogue

The instructions in this catalogue are classified into "DANGER", "WARNING", "CAUTION", and "NOTES", according to the degree of risk and hindrance.

These products have been designed and manufactured as a general industrial machine component.

🕂 Warning

• Operators with sufficient knowledge and experiences should operate the equipment.

The assembly, operation, and maintenance of machines and devices using hydraulic equipment must be performed by only the persons with sufficient knowledge and experiences.

- Keep away from fire. Since highly ignitable working oil is used for hydraulic equipment, the possibility of fires is inevitable.
- Do not handle the machines and devices or remove the hydraulic cylinder until safety is confirmed.
 - Prior to removal of hydraulic cylinders, ensure that safety countermeasures are provided, the hydraulic power supply is stopped, and the pressure in the hydraulic circuit is lost.
 - Ensure the safety of prevention against the drop of matters to be driven before maintenance and service of machines and devices.
 - The temperature of a cylinder is very high right after operation is stopped. Ensure that the temperature of the cylinder and oil is low before removing the cylinder.
 - When restarting the machines and devices, ensure that there is no abnormality in the bolts and other components, and slowly increase the pressure of the hydraulic source from low pressure to the set pressure.
- Mount protect covers if any danger may occur to operator's body.

If there is any danger to operator's body by matters to be driven or the movable part of the cylinder, try to consider the structure so that any part of operator's body cannot touch them.

Deceleration circuit or shock absorber may be required.

When the speed of matters to be driven is excessively high, or the weight of them is excessively heavy, shock absorption by only the cylinder cushion may be difficult. In such a case, the provision of the deceleration circuit in front of the cushion or the external shock absorber is required as countermeasures against shocks. Also, take the hardness of machines and devices into consideration.

- Securely connect so that the fixed part and connecting part of the cylinder will not be loosened.
 - Use the bolts with the specified size and strength class for fixing the cylinder attachments, and clamp them with the specified clamping torque. For rotary attachments, use the pin of the specified size.

If the connection is inappropriate or the bolts or the pin with the size other than the specified may lead to the slackened or damaged bolts due to the driving force and reaction force of the cylinder.

• Use mounting components made of the material with sufficient hardness.

 DO NOT excessively loosen the air vent plug when venting air.

The excessive loosening of the air vent plug may lead to coming-off or jumping of the plug from the cylinder, causing spouted oil, injury of operator, or misoperation of the cylinder.

- Consider the movements at an emergency stop. Consider the design without a risk of injuries of the operator or damages on machines and devices due to the cylinder movement, preparing for the case that the safety device is actuated to stop the machines at the emergency stop or system abnormalities due to power suspension.
- Check the specifications.
 - The products in this catalogue have been designed and manufactured as general industrial machine components or steel working machinery components. DO NOT use them under the pressure, temperature, or operating environment out of the specified range. Otherwise, the breakage or malfunctions of the machines may occur.
 - For electric components, such as switches, carefully check the specifications, including those of load current, temperature, and shocks. Otherwise, malfunction, breakage, or inflammable damages may occur.
- DO NOT make any modification on the products. Otherwise, injury, electric shocks, fires due to malfunctions may occur.
- Take safety countermeasures into consideration, and contact us before using the products under the conditions and environment shown below.
 - The use of the products under the environment or conditions other than specified and the use of them outdoors.
 - Applications related to public safety (Ex.: machines or devices used for atomic, railway, aeronautics, car, medical, and entertainment industries, emergency shutdown circuit, brake circuit, and machines and devices which contact drinks and foods)
 - Use in safety equipment.
 - Applications requiring reliable safety.

For safe use

ACaution

(General precautions)

- When the weight of the cylinder exceeds 15 kg, use a lifting tool or a carrier.
- Keep good arrangement and cleanliness of the working site. The slippage due to oil leak may lead to a turnover. Keep clean, and try to find oil leak soon.
- When mounting a cylinder, be sure to perform centering. Otherwise, the rod and tube may be disordered, causing the wear and breakage of the tube inside, surfaces of bush or rod, and packings. The unsmooth movement of the rod may also occur.
- When using the external guide, adjust it so that it is not disordered in any position of the stroke, or connect considering the connection of the rod end and loads.
- Use the working oil applicable to the material of the packings for the cylinder, and DO NOT mix working oil of other types.

The recommended cleanliness of working oil is the grade NAS 10 or higher.

(Piping)

• Perform flushing before piping to reduce chips, cutting oil, dusts in the pipes.

Remove the cylinder before flushing to avoid the ingress of flushing fluid into the cylinder.

Application of sealing tape

When connecting pipings with sealing tape, apply the tape with one or two threads on the thread tip left.

When screwing pipings and fittings in, take care to avoid the ingress of chips or sealing material of the piping screw into the piping. When applying liquid packing to the fittings, similarly pay attention. Scraps of sealing tape or chips may cause oil leak or other malfunctions.

- When piping, take care to avoid air accumulation.
- When using steel pipe for piping, select proper size and avoid rusts and corrosion.
- If welding is required for piping, ground in other safety location to avoid ground current in the cylinder. The ground current between the bush and rod, cylinder tube and piston may lead to a spark, causing the damages on surfaces and malfunctions.

(Adjustment of cushion and air vent)

- The excessive loosening of the check plug when venting air may lead to coming-off or jumping of the check plug from the cylinder, causing spouted oil.
 - Feed the oil with a low pressure (the pressure with which the cylinder can move at the low speed of approx. 10 mm/s), and loosen the check plug by one or two turns (counterclockwise) to vent air in the oil from the check valve.
- The initial increase of the piston speed during the cushion adjustment may lead to abnormal surge pressures, causing the damaged cylinder or machines.
 - Slowly increase the piston speed from the low speed of approx. 50 mm/s or lower to adjust the cushion.

When adjusting the cushion, adjust depending on matters to be driven (loads).

• If the cushioning is excessive, the cylinder may not reach the stroke end due to the contained oil in the cushion.

(Notes on trial run and operation)

- Ensure that the machines and devices are correctly mounted. DO NOT start without the confirmation of no oil leak.
- Run with the minimum pressure to start the piston rod (the piston speed must be approx. 50 mm/s or lower), and ensure that it is worked smoothly.

ACaution

(Maintenance and service)

- Perform maintenance and service (daily and regular inspection) to use cylinders safely for a long period.
- Prior to the maintenance and service, be sure to shut down the pressure source. Completely relieve the pressure in a cylinder.
- When relieving the pressure in a cylinder after shutting down the pressure source, the rod may be actuated with a load. Pay attention to the unexpected movement, and try to provide reliable safety countermeasures against it.

(Storage)

- DO NOT pile up cylinders. If any vibration is applied to the piled cylinders, they may become unfastened, causing an extreme danger and the damaged parts.
- DO NOT apply a vibration nor a shock to the stored cylinders, causing the damaged parts.
- Provide rust preventive measures to avoid rust occurrence to the stored cylinders.

(Wiring and connection)

- Prior to wiring, be sure to shut down the power supply to the electric circuit of the connection side.
 Otherwise, the operator may get an electric shock during working, or the switches or load devices may be damaged.
- Pay attention to avoid bending, pulling, twist of the switch cord, causing broken wires.
 Especially, provide appropriate measures to avoid any load applied to the end of the switch cord, including the fixing of the switch cord. When fixing the cord, do not clamp the cord excessively. Otherwise, the cord may be damaged, causing broken wires (of the cord).
 Any load applied to the end of the cord may lead to the damaged electric circuit boards in the switches.
- The larger bending radius is better. If it is excessively small, the cord may be damaged. The recommended bending radius is twice of the cord dia. or larger.

(Wiring)

- If the connection distance is long, fix the cord every 20 cm to avoid a sag in the cord.
- When laying the cord on the floor, protect it by covering with metallic tubes to avoid direct treading on it or a crush under machines. Otherwise, the coating of the cord may be damaged, leading to the broken wires or short-circuit.
- The distance between the switches and load devices or power supply must be 10 m or shorter. Otherwise, inrush current may occur to the switches during operation, causing the damaged switches.
- DO NOT bind the cord with high-voltage cables for other electric appliances, the power supply, nor with the power supply cord. NEVER perform wiring near these cables.

Otherwise, noises may enter the switch cord from the high-voltage cables and power source or power supply cable, causing the malfunctioned switches or load devices. It is recommended that the cord is protected with a shield tube.

(Connection)

- DO NOT directly connect the switches to the power supply. Be sure to connect them with the specified load devices, such as small relays and programmable controllers. Otherwise, short-circuit may occur, causing the inflammable damage of the switches.
- Carefully check the switches used, voltage of power supply and load devices, and current specifications.
 Inappropriate voltage or current specifications may lead to the malfunctioned or damaged switches.
- Perform wiring correctly according to the colors of lead wires. Prior to wiring, be sure to shut down the power supply to the electric circuit of the connection side. Operation, wrong wiring, and short-circuit of load devices with electric current supplied may lead to the damaged switches and electric circuit in the load devices. Even if the short-circuit is momentary, it causes the inflammable damage of the main circuit or output circuit.

SI unit conversion table

	SI units	Conventional units	Conversion rate	* Conversion values
Weight	kg	kg	1kg = 1kg	1
Force, load	Ν	kgf	1N = 0.102kgf	× 0.102
Pressure	МРа	kgf/cm ²	1MPa = 10.2kgf/cm ²	× 10.2
Torque, moment	N∙m	kgf∙m	1N⋅m = 0.102kgf⋅m	× 0.102
Work, energy	J	kgf∙m	1J = 0.102kgf⋅m	× 0.102
Moment of inertia	kg⋅m²	kgf.cm.sec ²	1kg·m ² = 10.2kgf·cm·sec ²	× 10.2
Bowor		kgf∙m/sec	1kW = 102kgf⋅m/sec	× 102
Power	KVV	PS	1kW = 1.36PS	× 1.36
Stress	N/mm ²	kgf/mm ²	$1 \text{N/mm}^2 = 0.102 \text{kgf/mm}^2$	× 0.102
Vacuum pressure	– kPa	– mmHg	– 1kPa = –7.52mmHg	× 7.52
Angle	rad	° (Degree)	1rad = 57.3° (Degree)	× 57.3
Angular speed	rad/s	rad/sec	1rad/s = 1rad/sec	1
Acceleration	m/s ²	G	1m/s ² = 0.102G	× 0.102
Viscosity	Pa·s	cP	1Pa⋅s = 10 ³ cP	× 10 ³
Kinematic coefficient of viscosity	m²/s	cSt	$1m^{2}/s = 10^{6}cSt$	× 10 ⁶

The conversion values with *-marks are the coefficients to convert the SI units into the conventional units .

Ex.) 0.5MPa $\times 10.2 = 5.1$ kgf/cm²

Selection materials

Check of conditions when using hydraulic cylinders

Items	Contents
1. Set pressure (MPa)	Set pressure in hydraulic circuit
2. Load weight (kg)	Weight of objects to be moved, angle with gravity
3. Load driving conditions	Load installation, moving condition, presence of offset load
4. Required cylinder stroke (mm)	Cylinder stroke required for machines, cylinder excess stroke
5. Working speed (mm/s)	The maximum and working speed of cylinder inrush into cushion
6. Working frequency (number of time/time)	Working frequency
7. Working oil	Type of working oil used
8. Environmental conditions Note)	Temperature, dusts, vibration, cutting fluid splashing conditions, etc.

Note) Be sure to contact us before using or storing cylinders in places where are splashed with water and sea water, or are highly humid, since countermeasures against rusts and corrosion are required.

Hydraulic cylinder selection procedures

When selecting a hydraulic cylinder, the items below need to be decided.

Check	Selection items	Selection method	References
□1	Selection of cylinder bore	 Select the appropriate cylinder bore depending on the required cylinder output, referring the selection materials of a cylinder bore. Remember that the selected bore may need to be modified depending on the buckling of the piston rod or judgment result of inertia for absorption. Select based on the items which will require the maximum bore. Ex. 1) If the cylinder stroke is long, select the cylinder bore based on the buckling of the piston rod. Ex. 2) If the cylinder is used for conveyance, and the load is stopped with the cylinder cushion, select the cylinder bore based on the judgment result of inertia for absorption. 	0 e e ne 15.16 er e
□2	Selection of cylinder series	Select the series based on the set pressure, cylinder bore, etc., referring to the type outline. At the same time, consider the specifications items.	e Refer to the general catalogue of hydraulic equipment.
□3	Selection of mounting style	Select the mounting style based on the machines conditions, referring to the dimensional drawings of each series.	e Refer to each series.
□4	Presence of boots and material selection (Selection of cylinder mounting length)	In the case of using cylinders in the places where are subjected to chips, sand and dusts, boots need to be mounted to protect the piston rod. Select the material, referring to the selection materials of boots. Note 1) Since the boots have holes on their surfaces for expansion, the ingress of liquid, including cutting fluid (coolant), is inevitable. In suc- a case, use the cutting fluid proof type (70/140HW-8). Note 2) If the boots are equipped, the W (dimension WF) is long. Refer to the dimensional table.	s, e e h e 24

Selection materials

Selection of cylinder bore

The bore of a hydraulic cylinder depends on the required

The hydraulic cylinder theoretical output table is based on the calculation results of the formula above.

- A₂: pull side piston pressurized area (mm²) A₂ = $\frac{\pi}{4}$ (D²⁻ d²)
- D : cylinder bore (mm) d: piston rod dia. (mm)
- P : set pressure (MPa)
- β : load rate

When deciding the actual cylinder output, the resistance in the cylinder slipping part and the pressure loss in piping and machines must be considered.

The load rate is the ratio of the actual force loaded onto the cylinder to the theoretical force (theoretical cylinder force) calculated from the circuit set pressure. The general set points are shown below.

For low speed working 60 to 80%

For high speed working 25 to 35%

Pushed hydraulic cylinder theoretical output table (load rate 100%)

Unit : kN (1kN ≒102kgf)

Bore	Pressurized				Set pres	sure MPa			
mm	area mm ²	1.0	3.5	5.0	7.0	10.0	14.0	16.0	21.0
φ20	314	0.31	1.10	1.57	2.20	3.14	4.40	5.02	6.60
φ 2 5	491	0.49	1.72	2.45	3.44	4.91	6.87	7.85	10.31
ф 32	804	0.80	2.81	4.02	5.63	8.04	11.26	12.86	16.89
φ40	1257	1.26	4.40	6.28	8.80	12.57	17.59	20.11	26.39
φ50	1963	1.96	6.87	9.82	13.74	19.63	27.49	31.40	41.23
ф63	3117	3.12	10.91	15.59	21.82	31.17	43.64	49.87	65.46
φ80	5027	5.03	17.59	25.13	35.19	50.27	70.37	80.43	105.56
φ 1 00	7854	7.85	27.49	39.27	54.98	78.54	109.96	125.66	164.93
φ 125	12272	12.27	42.95	61.36	85.90	122.72	171.81	196.35	257.71
φ 1 40	15394	15.39	53.88	76.97	107.76	153.94	215.51	246.30	323.27
φ 1 50	17671	17.67	61.85	88.36	123.70	176.71	247.40	282.73	371.10
φ 16 0	20106	20.11	70.37	100.53	140.74	201.06	281.49	321.69	422.23
φ 1 80	25447	25.45	89.06	127.23	178.13	254.47	356.26	407.15	534.38
φ200	31416	31.42	109.96	157.08	219.91	314.16	439.82	502.65	659.73
φ224	39408	39.41	137.93	197.04	275.86	394.08	551.71	630.52	827.57
φ250	49087	49.09	171.81	245.44	343.61	490.87	687.22	785.39	1030.84

Notes) • When deciding the actual cylinder output, consider the resistance in the cylinder slipping part and the pressure loss in piping and machines.

• Remember that the output at start may be decreased when the piston comes to a close contact status at the stroke end due to a load.

Pulled hydraulic cylinder theoretical output table (load rate 100%)

Pulled hyd	draulic	cylinde	r theore	tical ou	tput tab	le (load	rate 10	0%)	Un	it : kN (1kN	I ≒102kgf)
Series type	Bore	Rod dia.	Pressurized				Set pre	ssure MPa	3		
Certes type	mm	mm	area mm ²	1.0	3.5	5.0	7.0	10.0	14.0	16.0	21.0
	φ 3 2	φ 1 8	550	0.55	1.92	2.75	3.85	5.50	7.70	-	-
	φ 4 0	φ22.4	863	0.86	3.02	4.31	6.04	8.63	12.08	13.80	18.11
	φ50	φ 2 8	1348	1.35	4.72	6.74	9.43	13.48	18.87	21.56	28.30
	ф63	φ 35.5	2127	2.13	7.45	10.64	14.89	21.27	29.78	34.04	44.68
70/140H-8	φ80	φ 4 5	3436	3.44	12.03	17.18	24.05	34.36	48.11	54.98	72.16
Rod B	φ100	φ56	5391	5.39	18.87	26.95	37.74	53.91	75.47	86.26	113.21
70/140P-8	φ125	φ 7 1	8313	8.31	29.09	41.56	58.19	83.13	116.38	133.00	174.57
Rod B	φ 1 40	φ 8 0	10367	10.37	36.29	51.84	72.57	103.67	145.14	165.88	217.71
70/140HW-8	φ 15 0	φ85	11997	12.00	41.99	59.98	83.98	119.97	167.96	-	-
Rod B	φ160	φ90	13744	13.74	48.11	68.72	96.21	137.44	192.42	219.91	288.63
	φ180	φ 1 00	17593	17.59	61.58	87.96	123.15	175.93	246.30	-	-
	φ200	φ112	21564	21.56	75.47	107.82	150.95	215.64	301.89	-	-
	φ224	φ125	27136	27.14	94.98	135.68	189.95	271.36	379.91	-	-
	φ 25 0	φ 14 0	33694	33.69	117.93	168.47	235.86	336.94	471.71	-	-
	φ 4 0	φ18	1002	1.00	3.51	5.01	7.02	10.02	14.03	-	-
	φ50	φ22.4	1569	1.57	5.49	7.85	10.99	15.69	21.97	-	-
	ф63	φ28	2501	2.50	8.76	12.51	17.51	25.01	35.02	-	-
70/4 4014 0	φ80	φ 35.5	4037	4.04	14.13	20.18	28.26	40.37	56.51	-	-
	φ100	φ 4 5	6264	6.26	21.92	31.32	43.84	62.64	87.69	-	-
70/140H-8	φ125	φ56	9809	9.81	34.33	49.04	68.66	98.09	137.32	-	-
	φ 1 40	ф63	12277	12.28	42.97	61.38	85.94	122.77	171.87	-	-
70/140P-8	φ 15 0	φ 6 7	14146	14.15	49.51	70.73	99.02	141.46	198.04	-	-
Rou C	φ 16 0	φ71	16147	16.15	56.51	80.74	113.03	161.47	226.06	-	-
	φ 18 0	φ80	20420	20.42	71.47	102.10	142.94	204.20	285.88	-	-
	φ 200	φ90	25054	25.05	87.69	125.27	175.38	250.54	350.76	-	-
	φ224	φ 1 00	31554	31.55	110.44	157.77	220.88	315.54	441.76	-	-
	φ 250	φ112	39235	39.24	137.32	196.18	274.65	392.35	549.29	-	-
	φ 4 0	φ 2 8	641	0.64	2.24	3.20	4.49	6.41	8.97	-	-
	φ50	φ 35.5	974	0.97	3.41	4.87	6.82	9.74	13.63	-	-
	ф63	φ 4 5	1527	1.53	5.34	7.63	10.69	15.27	21.38	-	-
	φ80	φ56	2564	2.56	8.97	12.82	17.94	25.64	35.89	-	-
	φ100	φ71	3895	3.89	13.63	19.47	27.26	38.95	54.53	-	-
70/1404 0	φ125	φ90	5910	5.91	20.69	29.55	41.37	59.10	82.74	_	
70/140H-8 Rod A	φ 1 40	φ 1 00	7540	7.54	26.39	37.70	52.78	75.40	105.56	_	-
NOU //	φ 15 0	φ 1 00	9817	9.82	34.36	49.09	68.72	98.17	137.44	_	_
	φ 16 0	φ112	10254	10.25	35.89	51.27	71.78	102.54	143.56	-	-
-	φ 1 80	φ125	13175	13.18	46.11	65.88	92.23	131.75	184.45	-	-
	φ200	φ 140	16022	16.02	56.08	80.11	112.15	160.22	224.31	-	-
	φ224	φ 16 0	19302	19.30	67.56	96.51	135.11	193.02	270.23	-	-
	φ 2 50	φ 1 80	23640	23.64	82.74	118.20	165.48	236.40	330.97	-	-

Notes) • When deciding the actual cylinder output, consider the resistance in the cylinder slipping part and the pressure loss in piping and machines.

• Remember that the output at start may be decreased when the piston comes to a close contact status at the stroke end due to a load.

The hydraulic cylinder theoretical output table is based on the calculation results of the formula in page 15.

Calculation of cylinder buckling

- 1) Be sure to calculate the cylinder buckling.
- In the case of using a hydraulic cylinder, the stress and buckling must be considered depending on the cylinder stroke.

The strength in the case that the piston rod is regarded as a long column, the buckling strength, cannot be enhanced by adopting highly tension-proof steel or heat treatment. The only way to improve the buckling strength of a cylinder is to widen the piston rod dia., and therefore, the selection of the piston rod is the very important point.

The buckling chart shown in the next page, based on the Euler's equation that is applicable to an upright long column, indicates the maximum safe L values against the piston rod dia. when the cylinder is used with the compressive load that is most frequently applied.

 When buckling occurs to a cylinder, the cylinder rod may be bent, causing malfunctions or serious accidents.

Calculation method of cylinder buckling (use of buckling chart)

- 1. Find the L value (distance between the cylinder mounting position and load mounting position) with a cylinder fully extended.
- 2. Select any buckling chart depending on the mounting style, and find the maximum working load.

< Exercise >

Find the maximum working load for the 140H-8, ϕ 50, rod B (rod dia. ϕ 28), in case that the stroke is 1000 mm, CA type with the rod end eye.

< Answer >

- Find the L value with the cylinder fully extended. From the dimensional drawings in this catalogue, the L value can be calculated by the formula below. L = 230 + 70 + 1000 + 1000 = 2300 mm
- From the buckling chart of the both ends pin joints, the load can be found as below.
 W = 3 kN (≒306 kgf)

Notes on piston rod buckling

Prior to the calculation of the piston rod buckling, consider the cylinder stopping method. The stopping methods of a cylinder include the cylinder stopping method, in which a cylinder is stopped at the stroke end, and the <u>external stopping method</u>, in which a cylinder is stopped with the external stopper. The definition of load differs depending on the selection of the stopping method as shown below.

• Definition of a load when the cylinder stopping method is selected

• Definition of load when the external stopping method is selected

Fixed cylinder, rod end free

Buckling chart by cylinder mounting style

Selection materials

Load (kN)

q

Fixed cylinder, rod end pin joint

Buckling chart by cylinder mounting style

Selection of packing material

Prior to the selection of packing material, check the conditions below.

- 1. Oil temperature in a cylinder and ambient temperature
- 2. Type of working oil
- 3. In the case of use in the places where are splashed with cutting fluid (coolant), the type of cutting fluid
- 4. Use frequency

 Select the packing material suitable for the working oil used. The wrong material selection may lead to the inferiority of packing material, causing the damaged packings.

- The recommended cleanliness level of the working oil used is the NAS grade 10 or higher.
- DO NOT mix different types of working oil. Otherwise, the mixed working oil may be changed in quality, posing the inferiority of the packings.
- In the case that working oil including water (water-glycol fluid, water in oil fluid, oil in water fluid, etc.) is used, and the cylinder tube is made of carbon steel for machine-structural use, it is recommended to plate the cylinder tube inside. When you request the plated cylinder tube, instruct us.

Adaptability of packing material to working oil and working temperature range of packing material

			Applic	able work	ing oil									
No.	Packing material	Petroleum- based fluid	Water- glycol fluid	Phosphate ester fluid	W/O fluid	W/O fluid		Oil temperature and ambient temper					ature (°C)	
1	Nitrile rubber	0	0	x	0	0	-0	0 -10		50	00		120	150
2	Urethane rubber	0	x	x	Δ	Δ							 	
3	Fluoric rubber	0	×	0	0	0								
6	Hydrogenated nitrile rubber	0	O	×	O	0						N	lotes)	

Notes) ● The © and ⊖-marked items are applicable, while the X-marked items are inapplicable. For the △-marked items, contact us.

• In case that the priority is given to the abrasion resistance, adopt the packing material of the O-marked combinations.

• In case that hydrogenated nitrile rubber is adopted for the use of water-glycol fluid, water in oil fluid, oil in water fluid, the oil temperature must be ranged from -10 to +100°C.

• The temperature range in the table above indicates the working temperature range of packing material, and it is not the working temperature range of the cylinder. For the use of a cylinder at high temperature, contact us.

Criteria for selection of urethane rubber and nitrile rubber

The material of the packing for standard cylinders includes urethane rubber and nitrile rubber. When selecting the material, refer to the criteria for selection in the table below.

Characteristics of urethane rubber

Urethane rubber, having 2.5 times pull strength of nitrile rubber as shown in the table below, features the superior resistance against pressure and abrasion.

However, urethane rubber may be changed in quality due to heat and inferiority in working oil in a long run (and the multiplier effect of oil temperature), and therefore, disassembly and inspection are required every year.

Characteristics of nitrile rubber

The influences of heat and inferiority in working oil on nitrile rubber is less than those on urethane rubber. Since the pull strength of nitrile rubber is less than that of urethane rubber, nitrile rubber is rather inferior to urethane rubber in the resistance against pressure and abrasion. Therefore, in case that the use frequency is low under low pressures and disassembly and inspection are not performed for two or three years, it is recommended to adopt nitrile rubber.

Characteristics of hydrogenated nitrile rubber
 When using in places where abrasion resistance more reliable than fluoric rubber is required at high temperature, and abrasion resistance more reliable than nitrile rubber is required at normal temperature, hydrogenated nitrile rubber is most suitable.

Packing material Items	Nitrile rubber	Urethane rubber	Fluoric rubber	Hydrogenated nitrile rubber		
Abrasion resistance	0	Ø	0	O		
Life against inferiority of working oil	0	Δ	0	0		
Life with high oil temperature	0	Δ	0	O		
Oil leak from rod	⊖ (JIS B type)	⊚ (JIS A type)	⊖ (JIS B type)	⊖ (JIS B type)		
High use frequency under high pressure	0	O	Δ	O		
Low use frequency under low pressure	O	0	0	O		
Pull strength (reference value) (MPa)	17	47	15	30		

Table of packing selection criteria

Note) \bigcirc , \bigcirc , and \triangle - marks indicate the priority of selection in this order.

Criteria for selection in case that cutting fluid is splashed

Cutting fluid is in mist form or it is splashed several times a day.	If packing material is selected based on the adaptability of packing material to cutting fluid, normal cylinders are applicable.
Cutting fluid is splashed always or frequently.	In a normal cylinder, cutting fluid may enter the cylinder from the ground section. Therefore, select cutting fluid resistance type (70/140HW-8). For the use of a cylinder in the places where are splashed with nonaqueous cutting fluid of the type 2, contact us.

Adaptability of cutting fluid (coolant) and packing material

	Cutting fluid type	Nonaqueous	cutting fluid	Aqueous cutting fluid			
No.	Chlorine in cutting oil Packing material	Not included (type 1)	Included (type 2)	Not included (W1, type 2, No.1, 3)	Included (W1, type 2, No.2)		
1	Nitrile rubber	x	×	Δ	x		
2	Urethane rubber	x	×	×	×		
3	Fluoric rubber	0	0	×	×		
6	Hydrogenated nitrile rubber	0	×	0	0		

Note) The ⊖-marked combinations are applicable, while the x-marked combinations are inapplicable. For the △-marked combinations, they are applicable at 50°C or under.

Packing material for each series

No.	Packing material	35Z-1	35H-3 35P-3	100Z-1	100H-2	70/140H-8 70/140P-8 (¢32~¢160)	70/140H-8R 70/140P-8R (¢32~¢140)	70/140H-8 (φ180~φ250)	70/140HW-8	160H-1	210C-1 210H-3	35S-1	HQS2 100S-1 160S-1 210S-1	HQSW2 100SW-1 160SW-1	70/140M-3
1	Nitrile rubber	0	0	0	0	0	0	0	×	0	⊖(with BUR)	\times	×	×	Δ
2	Urethane rubber	×	×	×	0	0	0	×	×	0	0	×	×	×	0
3	Fluoric-containing rubber	×	0	×	×	0	0	0	×	×	⊖(with BUR)	×	0	×	Δ
6	Hydrogenated nitrile rubber	×	0	0	0	0	0	0	0	0	⊖(with BUR)	0	0	0	X
0	Slipper seal	×	0	X	×	0	×	X	X	×	Х	×	×	×	X
8	Combined seal	×	×	×	0	×	×	×	X	0	X	×	×	×	×

⊖-mark : standard

Merits

 \triangle -mark : semi-standard

x-mark : not available

The "BUR" in the column of the 210H-3 series in the table above is the abbreviation of the back-up ring.

Notes on selection of slipper seal

• Outline This seal is a combination of fluoric resin of the slipping part and nitrile rubber of the back-up ring.

- Reliable working performance at a low speed compared to the U type packing.
 - Ex.) The minimum speed of 70-140H-8 series U type packing: 8 mm/s Slipper seal: 1 mm/s
- Weak points More internal leakage compared to the U type packing. In case that the piston position must be held while an external force is applied as shown in the right figure, it is recommended to use the U type packing.
- Notes) For the applicable working oil temperature range and adaptability to working oil, refer to the materials related to nitrile rubber.
 - Slipper seal is the registered trademark of Nippon Valqua Industries, Ltd.

Relation between external oil leak amount and rod dia.

The external oil leak is the total of oil leak from the wiper part of the piston rod with the piston moving distance of 100 m (according to JIS B8367).

Selection of boots

If hydraulic cylinders are used in the places under unfavorable conditions, where are subjected to wind, wind and rain, and dusts, the piston rod especially needs to be protected. When selecting the boots, consider the environment conditions and temperature.

Boots type and resistible temperature

Symbols	Name	Material	Resistible tempera- ture
J	Nylon tarpaulin	Vinyl-coated nylon cloth	80°C
JN	Chloroprene	Nylon cloth coated with chloroprene	130°C
JK	Conex	Silicon-coated Conex cloth	200°C

Note) 1. If the boots are provided, the length of extended cylinder rod is changed.

- Note) 2. Remember that the resistible temperatures in the table above are for the boots, not for the cylinder.
- Note) 3. Conex is the registered trademark of Teijin Ltd.
- Note) 4. Neoprene, the older name of chloroprene, is the registered trademark of Du Pont-Showa Denko Co., Ltd. Thus, we have adopted general name, chloroprene.

Check of port dia. depending on cylinder speed

Cylinder speed depends on the quantity of oil fed into a cylinder.

The cylinder speed V can be obtained from the following formula:

 $V = 1.67 \times 10^4 \times Qc/A$

Qc : oil quantity supplied into cylinder (L/mm)

A : pressurized area of piston (mm²)

The chart below shows the relation between the speed and the required flow rate for each size of standard hydraulic cylinders (cylinder inside) and that between the required flow rate and flow velocity in pipe for each port dia.

< Example >

In the case of the 70/140H-8 series with an 80 mm cylinder bore and 300 mm/s cylinder speed, is the standard port dia. applicable ? Also, find the flow velocity in pipe.

< Answer >

In the chart below, find the cross point of the straight line from the point of 300 mm/s cylinder speed and the slant line of 80 mm cylinder bore, and draw a straight line parallel with the lateral axis until it reaches the slant line of the port dia. 3/4 (the standard port dia. for the 70/140H-8 series with a cylinder bore of 80 mm).

From the cross point on the slant port dia. line, draw a straight line parallel with the longitudinal axis until it reaches the lateral axis. From the cross point, the corresponding flow velocity in pipe is 5.2 m/s.

Since the cross point, which is found based on the port dia., cylinder speed, and bore, is within the applicable working range, the standard port dia. is applicable.

Oil quantity required

Note)

The appropriate flow velocity in pipe for the appropriate range is 7 m/s or under. In general, if the flow velocity in pipe exceeds 7 m/s, the piping resistance and pressure loss are increased, causing less output during cylinder work and lower speed. To reduce pressure loss, adopt piping with larger dia. of one grade to the cylinder port. The flow velocity is calculated with steel tube for piping S ch80.

Standard port dia.

Bore (mm)	Port dia.															
Series	20	25	32	40	50	63	80	100	125	140	150	160	180	200	224	250
70/140H-8	_	_	3⁄8	3⁄8	1⁄2	1/2	3⁄4	3/4	1	1	1	1	11/4	1 1⁄2	11⁄2	2
70/140P-8	—		_	³ /8	1⁄2	1/2	3⁄4	3/4	_			—	—			—

Maximum energy absorbed of cylinder cushion

The conditions of absorbed energy allowable for the cylinder cushion can be obtained from the formula below.

Inertia energy of load at the inrush into cushion	+	Energy generated by the external force applied to the cylinder at the inrush into cushion	≦	Maximum energy absorbed the cylinder cushion
E1		E2		Et

The procedures to find each item above are shown below.

Find the inertia energy of load at the inrush into cushion, E1.					
In the case of linear movement:					
$E_1 = MV^2/2 (J)$	M: load weight (kg)				
	V: load speed at the inrush into cushion (m/s)				
In the case of rotation	on movement:				
$E_1 = I \omega^2 / 2 (J)$	I: inertia moment of load (kg · m ²)				
	ω : angular velocity of load at the inrush into cushion (rad/s)				
Notes: If the cylinder speed is less than 0.08 m/s (80 mm/s), the cushioning effect is weakened.					
Even if the cylinder speed is less than 0.08 m/s (80 mm/s), suppose it is 0.08 m/s to find the E1.					
In the case of rotation movement, even when the cylinder speed is 0.08 m/s or lower, similarly					
suppose it is 0.08 m/s, and calculate the angular velocity ω to find the E1.					
Find the energy generated by the external force applied to the cylinder at the inrush into cushion, E2.					
The forces acting in the direction of the cylinder axis at the inrush into cushion are shown below.					

- The force applied to the cylinder by the gravity of load
- The force applied by other cylinders
- The force applied to the cylinder by springs

Find the external force F, which is applied to the cylinder at the inrush into cushion, and the energy E_2 by using the "Chart of conversion of external force into energy at the inrush into cushion of 70/140H-8".

In case that such an external force is not applied, the following condition is satisfied: $E_2 = 0$.

For the selection of cushion, suppose that the frictional resistance of load is 0.

Find the maximum energy absorbed of the cylinder cushion, Et. Find it with the corresponding chart of the "Maximum energy absorbed". Remember that the maximum energy absorbed of the cylinder moving forward (the ejected direction of the piston rod from the cylinder) and that of the cylinder moving backward are identical.

Ensure that $E_1 + E_2$ is same as the maximum energy absorbed E_t , or smaller.

If the following condition is satisfied, the cylinder is applicable: $E_1 + E_2 \leq E_t$.

If the following condition is satisfied, the cylinder is inapplicable: $E_1 + E_2 \ge E_t$.

- In such a case, perform the steps below, and then, select again.
 - Decrease the inertia force of load.
 - Decrease the external force applied to the cylinder.
 - Lower the set pressure.
 - Widen the cylinder bore.
 - Install a shock absorber.

When installing a shock absorber, refer to the "TAIYO Shock absorber general catalogue". DO NOT use the cylinder cushion together with a shock absorber. Otherwise, the inertia force of load may be applied to either of them due to the difference of cushioning characteristics.

Be sure to use cylinders within the range of the maximum energy absorbed of the cylinder cushion. Otherwise, the cylinder or the peripheral devices may be damaged, leading to serious accidents. of

Example of calculation for selection

< Example 1 >

Cylinder	70H-8 φ63				
Set pressure	P1 = 5 MPa				
Load weight	M = 500 kg				
Load speed	V = 0.3 m/s (the speed at the inrush into				
	cushion is 300 mm/s)				
Load moving direction					
Downward	$\theta = 30^{\circ}$ (there is no external force applied				
	to the cylinder other than gravity)				
Working direction	n				

Forward (the direction of the piston rod ejected from the cylinder)

Gravitational acceleration $g = 9.8 \text{ m/s}^2$

< Answer >

1. Find the inertia energy of load at the inrush into cushion, E1. Inertia energy in the case of linear movement, E1

 $E_1 = MV^2/2 = 500 \times 0.3^2/2 = 22.5J$

2. Find the E_2 , energy generated by the external force F, applied to the cylinder at the inrush into cushion.

2.1 Find the external force F, applied in the direction of the cylinder axis at the inrush into cushion.

 $\mathsf{F} = \mathsf{Mgsin} \ \theta = 500 \times 9.8 \times \sin 30^\circ = 2450\mathsf{N}$

2.2 Convert the external force F, found in the step 2.1, into the energy E₂.

In the "Chart of conversion of external force into energy at the inrush into cushion of 70/140H-8", find the

Mg sin*θ*

cross point of the straight line from the point of 2450 N on the lateral axis F and the slant line shown in the chart. Then, draw a straight line from the cross point on the slant line parallel with the lateral axis until it reaches the longitudinal axis of the chart. The cross point 8.7 J, indicates the energy applied by the external force. $E_2 = 8.7 J$

In the right chart, find the cross point of the straight line from the point

of 5 MPa on the lateral axis, the set pressure of the "Maximum energy absorbed of cushion" of the 70H-8 and the curve of ϕ 63. Then, draw a straight line from the cross point on the curve parallel with the

lateral axis until it reaches the longitudinal axis of the chart. The

θ=30[°]

2450 N External force F applied during

Set pressure P1

Ensure that E₁ + E₂ is same as the maximum energy absorbed E_t, or smaller.

cross point, 44 J, indicates the maximum energy absorbed.

 $\begin{array}{l} E_1+E_2=22.5+8.7=31.2\ J\\ \mbox{where, }E_t=44J\\ \mbox{Therefore, the following condition is satisfied: }E_1+E_2 \leq E_t.\\ \mbox{As a result, the cylinder is applicable.} \end{array}$

3. Find the maximum energy absorbed of the cylinder, Et.

< Reference >

 $E_t = 44J$

In case that the load moving direction is horizontal and there is no external force applied ($E_2 = 0$), from the set pressure, first find the maximum energy absorbed, E_t . Then, the allowable load weight and allowable load speed can be found.

To find the allowable load weight, M: M = $2E_t/V^2$ To find the allowable load speed, V : V = $\sqrt{2E_t/M}$

< Example 2 >

Cylinder $70H-8 \phi 63$ Set pressure $P_1 = 5 MPa$ Load weightM = 500 kgLoad dia.D = 0.7 mAngular velocity of load

 $\omega = 1.5 \text{ rad/s}$ (angular speed at the inrush into cushion)

Load moving direction

Horizontal (without external force applied to the cylinder)

Working direction

Forward (the direction of the piston rod ejected from the cylinder) The weight of the rack and pinion is so light that it can be ignored.

< Answer >

- Find the inertia energy of a load at the inrush into cushion, E1.
 1.1 Find the inertia moment of a load, I.
 - From the inertia moment calculation table, the I can be calculated as below. I = $MD^2/8 = 500 \times 0.7^2/8 = 30.6$ (kg · m²)
 - 1.2 Find the inertia energy of a load, E1. E1 = I $\omega^2/2 = 30.6 \times 1.5^2/2 = 34.4J$
- 2. Find the energy generated by the external force applied to the cylinder at the inrush into cushion, E2.

 $E_2 = 0$, since there is no external force generated from the gravity of a load.

3. Find the maximum energy absorbed of the cylinder, Et. In the right chart, find the cross point of the straight line from the point of 5 MPa on the lateral axis, the supply pressure of the "maximum energy absorbed of cushion" of the 70H-8 and the curve of ϕ 63 bore. Then, draw a straight line from the cross point on the curve parallel with the lateral axis until it reaches the longitudinal axis of the chart. The cross point 44 J, indicates the maximum energy absorbed. Et = 44J

Set pressure P1

4. Ensure that $E_1 + E_2$ is same as the maximum energy absorbed, E_t , or smaller.

 $\begin{array}{l} E_1+E_2=34.4+0=34.4\ J\\ where,\ E_t=44J\\ Therefore,\ the\ following\ condition\ is\ satisfied:\ E_1+E_2 \leq E_t.\\ As\ a\ result,\ the\ cylinder\ is\ applicable. \end{array}$

Note: Even if the cylinder speed is less than 0.08 m/s (80 mm/s), suppose it is 0.08 m/s, and find the angular velocity for calculation.

< Reference >

In case of the rotation movement, of which load moving direction is horizontal, without an external force ($E_2 = 0$), from the set pressure, first find the maximum energy absorbed, E_t . Then, the allowable inertia moment and allowable load angular velocity can be found.

To find the allowable load inertia moment, $~I~:~I=2E_t/\omega^2$

To find the allowable load angular velocity, ω : ω = $\sqrt{2}E_t/$ I

Selection materials

Chart of conversion of external force into energy at inrush into cushion of 70/140H-8

Bore $\phi 125 - \phi 250$

Bore \$\$ 432 - \$\$ 100

Bore $\phi 125 - \phi 160$

Precautions for use

Pressure ······ 35
Speed 35
Environmental conditions 35
Mounting 36
Piping ······ 37
Other notes ······ 37
Operation 37
Maintenance ······ 39
Storage ······ 39
Disposal ······ 39

recautions

Use cylinders only under the operating conditions within the allowable range specified for each series. Otherwise, the performance may become unreliable as described below, or accidents may occur.

1. Pressure

The pressure supplied to cylinders, including surge pressure, must be lower than the maximum allowable level. The use with the pressure exceeding the maximum allowable level may lead to galling in the slipping part or the damaged cylinder.

2. Speed

Use cylinders within the allowable working speed range. Otherwise, troubles below may occur.

When cylinders are used with the speed slower than the lower limit of the working speed range:

- Stick slip (cracks)
- Unsmooth speed control

When cylinders are used with the speed faster than the upper limit of the working speed range:

- Damaged cylinder due to increased kinetic energy
- Damaged packings due to slipping heat
- Increased internal or external oil leak due to thickened oil film
- Higher flow velocity in the piping part, causing the lowered energy efficiency due to increased pressure loss

3. Environmental conditions

3-1) Temperature

Use cylinders only within the allowable working temperature range. Otherwise, troubles below may occur. When cylinders are used at the temperature lower than the lower limit of the working temperature range:

• Brittle fracture due to lowered stretch of cylinder material

• Oil leak due to lowered elasticity of packings When cylinders are used at the temperature higher than the upper limit of the working temperature range:

- Damage due to lowered strength of cylinder material
- Damaged packings
- Galling due to thermal expansion in the slipping part

For the use of the items below, use them at the temperature lower than the upper limits shown below.

Items	Upper limit oil temperature		
Switch act avlinder	WR • WS types	60°C or lower	
Switch set cylinder	Other switches	70°C or lower	
Cylinder with position detector	35P-3 70/140P-8	50°C or lower	
	70•140MT-3	65°C or lower	
Cylinder with primary co aluminum alloy is used (35S-1 • 100S(W)-1 • 35S)	70°C or lower		

If several items with different upper limits of oil temperature are used, adopt the lowest temperature limit, and use the items at the temperature lower than the adopted upper limit.

Ex.) When using 100SW-1R with the WR type switch, use it at 60°C or lower.

3-2) Rust-proof measures

The use and storage of cylinders in the places where are highly humid, or are splashed with water or sea water require the consideration of rust-proof and anticorrosion measures. In such a case, contact us.

3-3) Installing location

- (1) Use cylinders only indoors.
- (2) Avoid the use in the places where are subjected to dusts and vibrations.

DO NOT use them under the environmental conditions shown below. The use under these conditions requires the protection of the rod part, rust-proof measures, review of part material, magnetic shield, and vibrationproof measures. If any countermeasure required for the cylinder side, contact us.

Working environmental	conditions
Sands, dusts, soil, chips, welder sp	atter, etc.
Rain, water, sea water, oil, chemica	ls, etc.
Direct sunlight (ozone), humidity, et	с.
High temperature, low temperature,	freezing, etc.
Highly magnetic field	
Vibrations	

4. Mounting

• For the mounting of cylinders, use bolts of the specified size, and fix with the bolts of the strength class (refer to JIS B8367).

In the case of the rotary type, use pins of the specified size. Otherwise, screws may be loosened or damaged due to cylinder driving force or its reaction force.

• When a cylinder is mounted with fixed, the performance of the cylinder largely depends on the hardness of the mounting material. Therefore, insufficient hardness of mounting material may lead to a warp in mounting material due to the driving force of the cylinder and the disordered piston rod and bush, causing premature wear and the damaged thread of the piston rod. Use the mounting material with sufficient hardness.

4-1) Mounting of rod end in the case of fixed type

(SD, EA, EB, LA, LB, FA, FB, FY, FE, FZ, FC, FD types) The movement direction of articles moved by a cylinder must be always aligned with the axis center of the piston rod movement. If the axis center is runout, premature wear of the bush, baking or galling of the cylinder tube may occur. To check the runout of the axis center, be sure to measure the core deviation of mounting part of the article at the position where the piston rod is fully ejected, and align the core. Then, connect the cylinder with the article.

4-2) Mounting of cylinder

When mounting cylinders, consider the following points. We cannot take responsibility for malfunctions due to wrong cylinder mounting.

- (1) In the case of fixed type
- ① SD type
 - Thread accuracy of tie rod : JIS 6h (equivalent to JIS grade 2)
 - Clamping torque : tie rod clamping specified torque value

(Refer to the clamping torque for each series.)

2 LA, LB and LC types

To mount LA and LB types, fix the attachments with clamping bolts. However, remember that this procedure is not perfect for the move in the axial direction when a load is applied. Therefore, install the stopper to the mounting base, as shown in the figures below.

③ EA, EB, FA, FB, FY, FE, FZ, FC, and FD types Fix cylinders as shown in the figures below.

(2) Rotary type

- For the cylinder of which mounting part moves inside a plane, be sure to connect the connection fittings of the rod end with pins, so that the mounting part can move inside the plane. For the plane and rectangular direction, perform centering similarly to the fixed type.
- Be sure to apply lubricant to the bearing part of the connection fittings.
- DO NOT use floating joints for rod end attachments.
- ① CA, CB, TA, and TC type attachments
 - Use pins of the size specified in this catalogue.
 - In the case of a long stroke (1000 mm or longer), avoid horizontal mounting. Otherwise, a lateral load is applied to the bush part due to the weight of the cylinder, causing uneven abrasion, substantially shorter service life, or galling.
- 2 TA, TC type attachments

Mount counterpart attachments so that they are vertical with the trunnion boss. If they are mounted slantingly, uneven abrasion may occur in the boss bearing area, causing a substantially shorter service life.

5. Piping

- Take sufficient care to avoid dusts and chips of pipes in the piping.
- When piping, avoid any air accumulation in pipes.
- When connecting with a rubber hose, do not bend it with the bending radius smaller than the specified level.
- Be sure to perform piping flushing. After flushing is complete, connect to the cylinder. Otherwise, the cylinder may be malfunctioned or oil leak may occur due to dusts in the piping.

6. Other notes

- When welding near a cylinder, it may be subjected with spatters. Protect the cylinder rod to avoid spatters.
- When welding during mounting, take sufficient care to avoid an electric current in the cylinder. Any electric current in the cylinder may lead to arcs between the rod and bush or between the piston and tube, causing the damaged cylinder parts.
- After mounting is complete, be sure to perform air vent and cushion adjustment. For the adjustment methods, follow the descriptions in "7. Operation".

7. Operation

• If the piston speed is fast from the beginning, abnormal surge pressure may occur, causing the damaged cylinder or machine.

• Trial run (before operation)

7-1) Air vent

Overloosening of the check valve during the air vent may lead to the coming-off of the check valve from the cylinder, causing spouted oil and serious accidents.

- (1) Feed oil of low pressure (the pressure that the cylinder moves at a low speed, approx. 10 mm/s) to the cylinder, and vent air in oil from the check valve or air vent plug.
 - •At this time, if the check valve is excessively loosened, it may be come off from the cylinder, causing spouted oil and serious accidents.
 - Repeat the step above until no air remains in the pipe.
 - Exhaust air in the piping, as well as that in the cylinder. Any air remained may cause malfunctions below.

[Symptoms]

- a) Stick slip
- b) Unsmooth speed control
- c) Damaged packings due to increased temperature caused by adiabatic compression
- d) Shock or vibration occurs to outside
- e) Impossibility of set output

(2) After air vent procedure is complete, clamp the check valve or air vent valve (clamping torque: 8 to 10 N•m), and check for oil leak.

7-2) Adjustment of cushion valve

Even if the cushion valve is loosened during the cushion adjustment, it touches the cushion plug to prevent it from being removed. However, if it is forcibly turned, it may be loosened and oil may be spouted, causing serious accidents.

(Cylinder with cushion)

Increase the piston speed gradually from a low speed, 50 mm/s or lower, and adjust the cushion.

- The cushion must be adjusted, since it has not been adjusted at our factory.
- If the piston speed is fast from the beginning, abnormal surge pressure may occur, causing the damaged cylinder or machine.
- Even if the cushion valve is loosened during the cushion adjustment, it touches the cushion plug to prevent it from being removed. However, if it is further loosened, oil may be spouted, causing serious accidents.

- (1) Perform the adjustment of the cushion valve by following the sequences below.
- ① Loosen the cushion lock nut with a spanner.Note) DO NOT loosen the cushion plug.

- 2 Turn the cushion valve only with an allen wrench.
 - a) Turn clockwise: the cushion stroke speed decreases.
 - b) Turn counterclockwise: the cushion stroke speed increases.

- The structure of cushioning, built in the cylinder, is equipped to prevent it from being damaged. For the inertia force that cannot be absorbed with the structure of cushioning, install the inertia force absorber or measurers in the hydraulic circuit.
- ③ After the adjustment of the cushion valve is complete, fix the cushion valve with an allen wrench, and clamp the cushion lock nut.
 (clamping torque: 7 to 8 N•m)

Note) • Cushion lock nut must not be fasten to excess. Otherwise cushion valve will be damaged.

38

8. Maintenance (maintenance and inspection)

To use cylinders without an accident for a long time, daily and regular inspections are required.

1) Daily inspection

For the daily inspection, check the points described below.

- (1) Check that the cylinder set bolts and nuts are not loosened.
- (2) Check that the working conditions are normal.
- (3) Check that there is no external leakage.
- (4) Check that there is no abnormality in other parts of the cylinder (tie rod , flange, etc.)

2) Regular inspection (disassembly inspection)

Decide the interval of the regular inspection depending on the working conditions and requirement, and perform according to the decided schedule. It is recommended to perform it once a year.

- Replace packings and gaskets with fresh ones at regular inspections.
- Do not use packings which have been stored for two years or more.
- Notes on fitting of valve seals

Valve seals must be fit in the specified direction and sequence. Wrong fitting direction and sequence will lead to the damaged packings, causing oil leak.

Fitting sequences

- ① Check the direction of a valve seal.
 - The marked side must be faced inside (refer to Fig.1).
- ② Fit the valve seal to the shaft of the cushion valve and the shaft of the check plug in the correct fitting direction (refer to Fig.2).
- ③ Take care to prevent the valve seal from being dropped, and screw it in (refer to Fig.3).

9. Storage

1) Notes on storage

When storing cylinders, take countermeasures against the followings:

(1) Rusts

(2) Permanent warp and inferiority of packings

2) Storage location

- Store cylinders in cool and dark place (max. temperature: 37°C), and protect them from direct sunlight and humidity. Place them higher than 30 cm from the floor.
- (2) DO NOT apply vibrations or shocks to the stored cylinders. The cylinder parts may be damaged.

3) Control and inspection during storage

- (1) Pack working oil (including rust preventive oil) in cylinders, and plug the port part.
 - If the port part is unplugged during storage, change working oil with fresh one, and plug again. Failure to perform this step may cause rusts on tube inside.
- (2) It is recommended to turn the stored cylinder 90°C every three months to let packed oil flow and reduce permanent warp of packings.
 - If there is any abnormality in the working condition of the cylinder that has been stored for a long time, replace packings.
 - If the storage period is a year or longer, it is recommended to perform the internal inspection of the stored cylinder.

(3) Repeat of rust preventive treatment

After the purchase of cylinders, repeat rust preventive treatment every year.

• Internal rust-proof measures (rust-proof measures for cylinder inside)

Change working oil (including rust preventive oil) in the cylinder.

• External rust-proof measures (for machined face, exposed part)

Apply rust preventive oil to mounting faces to machines and machined faces, such as a rod end screw part. Also, apply grease to the rod slipping part and the dust seal part, and protect with oil paper.

10. Disposal

- 1) Disassemble cylinders, sort the disassembled components by material (iron, copper, aluminum, resin, rubber, waste oil, etc.), and then, dispose them.
- 2) Piston rods are hard chrome plated. When disposing them, consult with a disposal company.
- 3) Dispose resin base and rubber base components as nonflammable wastes.
- 4) When disposing waste oil, conform to related laws and rules.

Precautions for use

70/140H-8 7/14 MPa double acting hydraulic cylinder

Standard built-in highperformance cushion in hydraulic cylinders

- Double acting hydraulic cylinders for 7/14 MPa with a bore from \$\$\phi\$32 to \$\$\phi\$250.
- The adoption of high-performance cushion has reduced a shock at stopping.
- The adoption of newly designed cushion valve allows easy cushion adjustment.
- The anti-coming-off structure and loosenesspreventive lock nut have been adopted as safety measures for the cushion valve.
- Standardized new-type small switch in varieties with the improved maintenance.

Standard specifications

Types	Specifications of general purpose and cutting fluid proof types						
Nominal pressure	7MPa	14MPa					
Maximum allowable pressure	Head side : 9MPa Rod side : (A)15MPa (B)13.5MPa (C)11MPa	Head side : 18MPa Rod side : (A)18MPa (B)18MPa (C)14MPa					
Proof test pressure	10.5MPa	21MPa					
Minimum working pressure	Head side : 0.3M Rod side : (A)0 (B)0 (C)0	IPa or less .6MPa or less .45MPa or less .4MPa or less					
Operating speed range	\$2-\$63:8-400mm/s \$80-\$125:8-300mm/s \$140-\$250:8-200mm/s						
Temperature range (Ambient temperature and oil temperature)	Standard type						
Structure of cushioning	Metal fitting type						
Adaptable working oil	Petroleum- (For other working oil, refer to the	based fluid e table of working oil adaptability)					
Tolerance of thread	JIS 6g/6H (JIS grad	de 2 or equivalence)					
Tolerance of stroke	100mm or lower $+\frac{0.8}{0}$ 101- 25 631-1000mm $+\frac{1.4}{0}$ 1001-160	$50 \text{mm}^{+1.0}_{0}$ 251- 630 mm $^{+1.25}_{0}$ $1601-2000 \text{mm}^{+1.8}_{0}$					
Tube material	Standard type • carbor Switch set • stainle	n steel for machine structural use ss					
Mounting type	SD•LA•LB•LC•FA•FB•FC•FD•FK•	SD•LA•LC•FC•FD•FE•FK•					
Mounting type	FE•FY•FZ•CA•CB•CS•TA•TC	FY•FZ•CA•CB•CS•TA•TC					
Accessories	 Rod end eye (T-end), Eye join rod end clevis (Y-end) with pin Floating joint (F-end) : only Boots : only Star Sem 	t with spherical bearing (S-end) , , lock nut 7 MPa type general purpose type ndard: nylon tarpaulin i-standard: chloroprene, Conex					

Terminologies

Nominal pressure

The maximum set pressure of a relief valve in a hydraulic circuit in which a cylinder is used.

Maximum allowable pressure

The maximum allowable pressure generated in a cylinder (surge pressure, etc.)

Proof test pressure

Test pressure against which a cylinder can withstand without unreliability performance at the return to nominal pressure.

Minimum working pressure

The minimum pressure that the cylinder placed horizontally without a load can work.

Notes)

- The hydraulic pressure generated in a cylinder due to the inertia of load must be lower than the maximum allowable pressure.
- The working temperature range depends on the material of packings. For details, refer to the selection materials in the beginning of this catalogue.
- In case that the lock nut is attached to the piston rod end thread part, lengthen the thread length (dimension A).
- The cylinder with a bore of ϕ 150 mm does not conform to JIS standards.
- The types in () marks in the mounting style column are applicable to the nominal pressure of 7MPa. It is basically impossible to use them with the pressure exceeding 7 MPa. For using method, contact us. The FE type is applicable only to the rod A.
- For the internal structure, refer to the sectional drawings in the end of this catalogue.
- Conex, material of the boots, is the trademark of Teijin, Ltd.
- LB mounting and A rod is limited at the bore 125mm.

Notes) • You are requested to select "Switch set" cylinder when you would like to use switches.
Switches can't be mounted on Standard type.

Stroke fabrication range

Unit: mm Cushion stroke length

Bore	Standard type	Switch set
φ32 - φ50	- 1200	- 1200
φ63• φ80	- 1600	- 1600
φ100 - φ140	- 2000	- 2000
φ150 - φ250	- 2000	-

- The above strokes indicate the maximum available strokes for the standard type.
- For the rod buckling, check with the buckling chart of the selection materials. If you request the strokes other than in the table above, contact us.

В	ore	Cushion ring length L	Cushion ring parallel part length l			
*30	R side	25	7			
ψ3Ζ	H side	23	7			
φ40 - φ63		25	7			
φ80 -	φ 12 5	25	8			
φ140 - φ160		30	12			
φ180 - φ224		40	20			
φ 2 50		45	25			

- The cushion stroke lengths in case of cylinders used up to the stroke end.
- In case that cylinders are not used up to the stroke end, and they are stopped 5 mm or more before the stroke end, the cushioning effect will be weakened. In such a case, contact us.

Unit: mm

70/140H-8

43

Note) For the details of types other than the above, refer to the specifications of the general purpose type.

Switch List

Kind	Switch symbol	Load voltage range	Load current range	Maximum open/ close capacity	Protective circuit	Indicating lamp	Wiring method	Code length	Applicable load device
	AF AX101				None			1.5m	
	AG AX105	DC5-30V	DC: 5-40mA			LED (red light lights	0.3mm ² 2-core.	5m	
	AH AX111	AC5-120V	AC: 5-20mA	DC: 1.5W	Present	up during ON)	outside diameter ø4mm	1.5m	
	AJ AX115						Rear wiring	5m	
	AE AX125	DC30V or less AC120V or less	DC40mA or less AC20mA or less		None	None		5m	Small
tact	AK AX11A	AC5-120V	5-20mA	2VA	Dresent	LED (rod light lights	4-pin connector type	0.5m	relay program- mable controller
Con	AL AX11B	DC5-30V	5-40mA	1.5W	Present	up during ON)	Rear wiring	0.5m	
	5 WR505	DC5-50V AC5-120V	DC3-40mA AC3-20mA	DC: 1.5W AC: 2VA		LED	0.3mm ² 2-core	5m	
	7 WR505F				None	(red light lights	outside diameter ø4mm	5m	
	6 WR515						Rear wiring	5m	
	S SR405	AC80-220V	2-300mA	30VA	Present	Neon lamp (lamp lights up during OFF)	0.5mm² 2-core, outside diameter ∳6mm Rear wiring	5m	
	BE AX201					LED (red light lights		1.5m	
	BF AX205		5 40m A		Descent	up during ON)		5m	
act	CE AX211	DC5-30V	5-40MA	_	Present	LED	0.3mm ² 2-core	1.5m	Small relay
cont	CF AX215					red/green)	outside diameter ø4mm	5m	program mable controller
No	2 WS215					LED	Rear wiring	5m	
	4 WS215F	DC10-30V	6-70mA	_	Present	(2-lamp type in		5m	
	3 WS225					ieu/gieeil)		5m	

Notes) • For the switches without a protective circuit, be sure to provide the protective circuit (SK-100) with load devices when using induction load devices (relay, etc.). • For the handling of switches, be sure to refer to the switch specifications in the end of this catalogue.

• All the AX type switches can be mounted. For the types other than the above, refer to the switch specifications in the end of this catalogue.

• The WR and WS type switches are cutting fluid proof type.

SR405 switch can be used for only bore size \$32~\$125.

• We have developed CE conformed switches. Please refer to the end of a book for detailed information.

• We recommend AND UNIT (AU series) for multiple switches connected in series.

• General purpose type

• Cutting fluid proof type

WR • WS type switch

ordering the	cutting fluid proof type switches, WR and WS types.
5 WR505	The switch and straight box connector (F-SB)
2 WS215	are combined [the flex tube (F-05: 4.8 m) is required].
7 WR505F	The flex tube (F-05: 4.8 m) is attached to the
4 WS215F	switch and straight box connector (F-SB).

+ 0

• For the switch symbol **(1)**, pay attention to the points below when

Mounting type

Note) The mounting type of the 7 MPa type cannot be used basically with the pressure exceeding 7 MPa. For the using method, contact us.

Cushion valve position and air vent position depending on cylinder bore (for rod A only)

Bore \$40 • \$50 • \$100 \$4140 \$4150

Bore \$63 • \$80 • \$125 \$160

Stroke fabrication range

Bore	Standard type	Switch set
φ32 - φ50	- 1200	- 1200
ф63 • ф80	- 1600	- 1600
φ100 - φ140	- 2000	- 2000
φ150 - φ250	- 2000	-

• The above strokes indicate the maximum available strokes for the standard type. For the rod buckling, check with the buckling chart of the selection materials. If you request the strokes other than in the table above, contact us.

• Please refer to the 140L-1 series beyond above mentioned strokes. (140L-1, bore:63mm to 160mm, Maximum:3000mm stroke)

*140L-1 series is specilly designed for long stroke, so not interchangeable with H-8 series.

case of LA mounting Port position A surface Port position B surface

The locations of port, cushion and check in

Port position C surface

Port position D surface

Adaptability of working oil to packing material

	Adaptable working oil									
Packing material	Petroleum- based fluid	Water- glycol fluid	Phosphate ester fluid	W/O Water in oil fluid	O/W Oil in water fluid					
1 Nitrile rubber	0	0	×	0	0					
2 Urethane rubber	O	x	x	Δ	Δ					
3 Fluoric rubber	0	x	0	0	0					
6 Hydrogenated nitrile rubber	0	O	X	0	O					

Notes) 1. The ^O and ^O-marked items are applicable, while the x-marked items are inapplicable. For the use of the △-marked items, contact us.

2. The [©]-marked items are the recommended packing materials in case of giving the first priority to abrasion resistance.

Cutting fluid proof type/adaptability of cutting fluid to packing material

Packing	Nonaqueous	cutting fluid	Aqueous		
material	Туре 1	Type 2	cutting fluid		
6 Hydrogenated nitrile rubber	0	×	0		

 \bigcirc : applicable **x** : inapplicable

For the working temperature range of packing materials, refer to the selection materials in the beginning of this catalogue.

Thread dimension table

Unit : mm

Poro					
DOIE	AE	DE	FF	ine i inread	
<i>ø</i> 32	12	<i>ф</i> 25.5	G3/8	NPT3/8	
<i>φ</i> 40	12	<i>ф</i> 25.5	G3/8	NPT3/8	
<i>φ</i> 50	14	<i>ø</i> 30	G1/2	NPT1/2	
<i>ф</i> 63	14	<i>ø</i> 30	G1/2	NPT1/2	
<i>φ</i> 80	16	<i>ф</i> 36.9	G3/4	NPT3/4	
<i>ϕ</i> 100	16	<i>\$</i> 36.9	G3/4	NPT3/4	
<i>ф</i> 125	18	<i>ф</i> 46.1	G1	NPT1	
<i>ϕ</i> 140	18	<i>ф</i> 46.1	G1	NPT1	
<i>ф</i> 150	18	<i>ф</i> 46.1	G1	NPT1	
<i>ф</i> 160	18	<i>ф</i> 46.1	G1	NPT1	

Port G or NPT

Please specify the model as following (ex.) 70H-8 2LA50BB100-G A B

Unit: mm

Switch mounting minimum possible stroke

Mounting style		Туре	es other	than TC ty	pe	TC type							
Switch quantity	witl	n a swite	ch	with t	wo swito	hes	with	n a swito	h	with two switches			
mm Switch type	AX type	WR type	WS type	AX type	WR type	WS type	AX type	WR type	WS type	AX type	WR type	WS type	
<i>φ</i> 32	20	45((35)	25	45(35)	50	70 (60)	75 (65)	110	155 (135)	165 (145)	
<i>φ</i> 40	20	45((35)	25	45(35)	50	70 (60)	75 (65)	110	155 (135)	165 (145)	
<i>φ</i> 50	20	40 (30)	45 (35)	25	40 (30)	45 (35)	50	70 (60)	75 (65)	110	155 (135)	165 (145)	
<i>ф</i> 63	20	40((30)	25	40(30)		60	85(75)		120	170 (150)	175 (155)	
<i>\phi</i> 80	20	40((30)	25	40(30)	60	85(75)	120	170 (150)	175 (155)	
<i>ф</i> 100	20	35 (25)	40 (30)	25	35 (25)	40 (30)	65	85 (75)	95 (85)	135	175 (150)	190 (170)	
<i>φ</i> 125	20	35 (25)	40 (25)	25	35 (25)	40 (25)	70	90 (80)	95 (85)	150	185 (160)	195 (170)	
<i>φ</i> 140	20	_	-	25	_	_	95	_	-	175	_	_	

Notes)

- For the TC type (with a switch), the cylinder strokes in case that the TC type attachment shown in the right figures are positioned in the place other than the center are shown in the table above.
- For the minimum PH dimension at the switch mounting, refer to the dimensional drawings of the TC type.
- The dimensions in the () marks of the WR and WS types are the minimum strokes at the mounting of the WR505 and WS225.

Standard specifications

- With both ends cushions
- Port position (A), cushion valve position (B)

Modification of port position and cushion valve position

The standard port position is (A), and the standard cushion valve position is (B). When modifying the positions, enter the symbols shown in the dimensional drawings.

Ex.) 70H-8R 2SD80BB100 - B C AH2

Port position (A, B, C, D)

Cushion valve position (A, B, C, D, 0)

- For the TA type, the standard port position and cushion valve position on the rod side are (A) and (C), and those on the head side are (A) and (B).
- \bullet In case that the cushion is not equipped, the cushion valve position is O.

Semi-standard Fabrication range

- With boots
- Magnetic proximity switch WR and WS types
 Note) The WR and WS types are the standard cutting fluid proof types.
- Modification of TC attachment (dimensional symbol: PH)
- Modification of FK dimension
- Plated cylinder tube (hard chrome plated 2/100 mm)
- Modification of piston rod end (dimensional symbol: W, A, KK) Refer to page 95.

Weight table/general purpose type, cutting fluid proof type

Unit: kg

Bore	Rod	Basic (SD f	weight type)	Addit weigł 1 mm :	ional nt per stroke						Mou	nting	acce	esso	ries	weig	ht					
mm	type	Standard type switch set	Double rod type	Standard type switch set	Double rod type	LA	LB	LC	FA	FB	FC	FD	FK	FE	FY	FZ	CA	CS	СВ	TA	тс	
<i>ø</i> 32	В	3.3	4.1	0.006	0.008	0.3	0.3		0.1	0.6	0.6	0.9	1.1	-	0.2	0.7	0.4	_	0.5	0.1	0.5	
	Α	3.8	-	0.013	_			_	-	-			_	0.9								
<i>ϕ</i> 40	В	3.5	4.4	0.011	0.014	0.5	0.5	0.63	0.2	07	0.7	1.1	12		0.3	0.8	0.5	0.6	0.6	0.1	0.6	
	С	3.4	4.3	0.010	0.012			0.05	0.2	0.7			1.2									
	Α	5.5	-	0.017	-			_	-	-			_	1.5								
<i>φ</i> 50	В	5.0	6.4	0.014	0.019	0.9	0.9 0.7	0.88	07	12	1.5	2.0	22	_	1.1	1.6	1.0	1.1	1.2	0.4	1.0	
	С	4.9	6.2	0.012	0.014			0.00	0.7	1.2			2.2									
	A	9.1	-	0.024	-			_	-	-	-			2.3								
<i>ф</i> 63	В	7.9	10.2	0.019	0.027	1.0	1.0 1.2	15	10	18	2.2	3.0	36	_	1.6	2.4	2.0	1.9	2.6	0.6	1.2	
	С	7.6	9.8	0.017	0.022								0.0									
	A	18.0	-	0.039	_			_	-	-			_	3.9								
<i>\</i> \$0	В	16.2	20.3	0.032	0.045	1.8	2.0	2.5	1.1	3.0	2.8	4.7	4.7	_	2.1	4.0	3.0	3.6	3.6	0.6	2.1	
	C	15.5	19.4	0.027	0.035					0.0												
	A	29.6	-	0.060	-	7 2.1			_		-	-			6.6							
<i>ф</i> 100	В	26.0	32.7	0.048	0.067		2.9	3.63	1.8	4.8	4.6	7.4	8.9	_	3.9	6.9	5.5	6.7	6.7	1.0	3.8	
	C	24.9	31.1	0.042	0.055														$\left - \right $			
	A	49.2	-	0.096	-	3.2			_	-	-	-			11.4							
<i>ф</i> 125	В	42.9	53.6	0.077	0.107		5.5	6.88	2.9	8.4	8.0	13.0	12.6	_	6.2	12.1	9.9	12.8	12.1	2.1	6.2	
	C	42.5	52.7	0.065	0.084					••••												
	A	67.5	_	0.122	-			_	-	-				14.9								
<i>ф</i> 140	B	59.6	73.9	0.100	0.140	3.8	7.7	9.63	3.2	11.1	9.2	17.1	20.4	_	8.2	16.1	16.7	-	21.0	4.1	11.1	
	C	56.0	69.6	0.085	0.111																	
	A	77.9	-	0.148	-			_	-	-			-	17.9								
<i>ф</i> 150	B	69.6	86.5	0.118	0.162	4.8	9.6	12.0	4.9	13.7	16.6	22.4	22.9	_	10.7	19.5	18.2	-	26.8	4.6	10.9	
	C	67.9	83.6	0.101	0.127									<u> </u>								
400	A	93.0	-	0.148	-		40.0	_	-	-	40.0	05.0	_	21.5		00 5			00.4	- 0		
<i>φ</i> 160	В	84.3	114.6	0.121	0.171	5.4	10.0	13.0	5.3	16.5	19.0	25.2	31.2	_	11.3	22.5	22.9	-	28.4	5.2	14.8	
		79.9	99.1	0.102	0.132																	
<i>ф</i> 180	В	115.1	_	0.179	_	7.9	13.8	_	7.7	22.7	25.0	33.6	_	_	17.5	32.5	33.8	_	42.9	_	19.4	
		108.5		0.157																		
<i>ф</i> 200	В	155.2	_	0.220	_	11.4	21.0	_	10.6	31.6	28.8	48.7	_	_	22.6	43.6	51.4	-	65.4	_	27.2	
		147.3		0.192																		
<i>ф</i> 224	В	203.8	_	0.200	_	12.7	32.0	-	11.6	41.5	33.2	63.1	-	-	30.6	60.5	65.6	_	82.7	-	36.5	
		190.9		0.234																		
φ250 B 283.7 C 264.1	_	0.333	_	18.3	46.7	-	17.5	55.1	48.2	88.3	-	-	42.5 80.	80.1	74.5	_	91.6	-	43.3			
	U U	264.1		0.290																		

Switch additional weight

Switch additional weight Unit: kg											
Switch		AX type	SR type	WP WS types							
Bore (mm)	Cord length 1.5 m	Cord length 5 m	Connector type	Cord length 5m	WR, WS types						
<i>\$</i> 932 - <i>\$</i> 50	0.05	0.13	0.04	0.22							
<i>ф</i> 63	0.07	0.14	0.06	0.22							
<i>\\$</i> 80 • <i>\\$</i> 100	0.07	0.15	0.06	0.22	0.5						
<i>ф</i> 125	0.09	0.16	0.07	0.22							
<i>ф</i> 140	0.09	0.16	0.08	-							

Calculation formula

cylinder weight (kg) = basic weight + (cylinder stroke mm × additional weight per 1 mm stroke) + (switch additional weight × switch quantity) + mounting accessories weight + rod end attachment weight

Calculation example 140H-8R, bore \$\$0, rod B, cylinder stroke 200 mm, 2 pcs. of AX215, LA type $16.2 + (0.032 \times 200) + (0.15 \times 2) + 1.8 = 24.7 \text{ kg}$

Unit: kg

Bore	Rod		Rod	end attac	hment we	eight	
mm	type	Rod end eye (T-end)	Rod end eye (S-end)	Rod end clevis (Y-end w/ pin)	Floating joint (F-end)	Lock nut	Separate flange joint (M type joint)
<i>ø</i> 32	В	0.5	_	0.7	0.39	0.02	0.3
	Α	-	—	_	-	0.05	0.6
<i>φ</i> 40	В	0.5	0.7	0.7	0.75	0.03	0.4
	С	0.0	0.7	0.7	0.39	0.02	-
	A	_	-	-	-	0.11	0.8
ϕ 50	В	10	1.1	12	1.41	0.05	0.6
	С	1.0	1.2		0.75	0.03	-
	A	_	-	_	-	0.24	1.4
<i>ф</i> 63	В	2.7	2.1	3.9	2.68	0.11	0.8
	С		2.3		1.41	0.05	_
	A	_	-	-	-	0.52	3.0
ϕ 80	В	2.2	3.2	3.7	_	0.24	1.4
	С		3.6		2.68	0.11	
	A	_	-	_	-	1.10	5.3
<i>ф</i> 100	В	4.2	6.7	7.7	_	0.52	3.0
	С		7.3		-	0.24	
	A	_	-	-	_	1.93	10.6
<i>ф</i> 125	В	8.0	12.4	14.6	_	1.10	5.3
	С	0.0	13.7		-	0.52	-
	A	_	-	_	-	2.90	_
<i>ф</i> 140	В	19.0	_	28.8	-	1.44	7.0
	С	10.0	-	20.0	-	0.77	_
	A	_	-	-	-	3.24	_
<i>ф</i> 150	В	18.9	_	28.3	_	1.65	9.3
	С		-		-	0.94	
	A	_	_	-	-	3.24	
<i>ф</i> 160	В	22.7	_	34.2	_	1.93	10.6
	С		-		-	1.10	_
<i>ф</i> 180	В	37.6	_	537	_	2.90	_
φ100	С	01.0	_	00.7	_	1.44	_
<i>d</i> 200	В	53.9	_	87.4	_	3.24	-
	С		_		_	1.93	-
<i>φ</i> 224	В	77.2	_	128.3		5.97	-
γ - '	С		_	120.0	_	2.90	-
<i>ф</i> 250	В	74.4	_	123.9	_	7.77	-
φ=00	C		—	120.0	—	3.24	

48

Unit: mm

- For the use of the SD type, be sure to refer to the "Precautions for use, 4. Mounting" in the beginning of this catalogue.
- For the screw length (dimension A) in the case of using the lock nut, refer to "Accessories".
- For the mounting of switches, refer to the dimensional drawings of "Switch set". All the contents other than "switch mounting dimensions" are identical.

Double rod type (ϕ 32 - ϕ 160/rod B, C) For both ends loaded type

[•] The switch set (ϕ 32 - ϕ 140) is also within the fabrication range.

70-140H-8/TH8 Bore K

Stroke + X

1/4

<	ł	

φww		
Rod B • C Nylon tarpaulin Chloroprene	$ \begin{pmatrix} \phi 32 \\ \phi 40 & \bullet \phi 50 \\ \phi 63 & - \phi 100 \\ \phi 125 & - \phi 200 \\ \phi 224 & \bullet \phi 250 \end{pmatrix} $	
Conex	$ \begin{pmatrix} \phi 32 \\ \phi 40 & \phi 50 \\ \phi 63 & -\phi 100 \\ \phi 125 & \phi 140 \\ \phi 150 & -\phi 200 \\ \phi 224 & \phi 250 \\ \end{pmatrix} $	1/2 Stroke + X 1/2.5 Stroke + X 1/3 Stroke + X 1/3.5 Stroke + X 1/4 Stroke + X 1/4.5 Stroke + X

	Standard	Semi-st	andard
Material	Nylon tarpaulin	Chloroprene	Conex
Resistible temperature	80°C	130°C	200°C
Notes) • Remember boots, not • Conex is t • If decimals number. • The boots	r that the resistible temp for the cylinder. he registered trademark s are included into the ca have been mounted at	peratures shown in the c of Teijin Ltd. alculation results, raise our factory prior to del	table above are for the them to the next whole ivery.
Rod A Nylon tarpaulin Chloroprene	(1/3.5 Strol 0 1/4 Strol 60 1/5 Strol	$\begin{pmatrix} xe + X \\ xe + X \\ xe + X \end{pmatrix}$
Conex	φ40 φ50 - φ80 φ100	1/2.5 Strol 0 1/3 Strol 1/3.5 Strol	<pre><c +="" <c="" pre="" x="" x<=""></c></pre>

φ125 - φ160

70/140H-8

Dimensional table

Symbol				Ro	d B				Rod C							Rod A										
Bore	А	В	Kł	ĸ	MM	S	SL	VD	Α	В		KK		MM	S	SL	VD	А	В		KK		MM	S	SL	VD
φ 3 2	25	φ34	M16>	×1.5	φ18	14	10	10	-	-		-		-	Ι	-	-	-	_		-		-	-	_	-
φ40	30	φ40	M20>	<1.5	φ22.4	19	11	10	25	φ36	М	16×1.	5 φ	18	14	10	10	35	φ43	M	124×1	.5	¢28	24	14	17
φ50	35	φ46	M24>	×1.5	φ 2 8	24	14	10	30	φ40	М	20×1.	5 φ	22.4	19	11	10	45	φ50	Μ	130×1	.5	¢35.5	30	16	17
φ 6 3	45	φ55	M30>	<1.5	φ 35 .5	30	16	10	35	φ46	М	24×1.	5 φ	28	24	14	10	60	φ65	Μ	139×1	.5	ф 4 5	41	20	19
φ80	60	φ65	M39>	×1.5	φ45	41	20	10	45	φ55	М	30×1.	5 φ	35.5	30	16	9	75	φ80	Μ	148×1	.5	ф 5 6	50	23	20
φ 1 00	75	φ80	M48>	<1.5	φ56	50	23	10	60	φ65	M	39×1.	5 ¢	45	41	20	10	95	φ95	M	164×2		φ 71	65	27	23
φ 125	95	φ95	M64>	<2	φ71	65	27	10	75	φ80	М	48×1.	5 φ	56	50	23	10	120	φ11 	5 M	180×2	2	ф 9 0	85	33	17
φ 1 40	110	φ105	M72>	<2	φ80	75	31	10	80	φ85	M	56×2	¢	63	55	24	10	140	φ12 	5 M	195×2	2	ф 1 00	-	Drill hole	17
φ 15 0	115	φ110	M76>	<2	φ85	80	33	10	85	φ90	М	60×2	¢	67	60	30	10	140	φ12 	5 M	195×2	2	ф 100	-	Drill hole	15
φ 16 0	120	φ115	M80>	<2	φ90	85	33	10	95	φ95	M	64×2	¢	71	65	27	10	150	φ14(M	1100×	2	ф 112	-	Drill hole	16
φ 1 80	140	φ125	M95>	<2	φ 1 00	-	Drill hole	10	110	φ10	5 M	72×2	¢	80	75	31	10	-	-		-		-	-	-	-
φ 200	150	φ 1 40	M100)×2	φ112	-	Drill	10	120	φ11 :	5 M	80×2	¢	90	85	33	10	-	-		-		-	-	-	-
φ224	180	φ 15 0	M120)×2	φ125	-	hole	10	140	φ12	5 M	95×2	¢	100	-	hole	10	-	-		-		-	-	-	-
φ 250	195	φ 17 0	M130)×2	φ140	-	hole	10	150	φ14(M	100×2	2 ¢	112	-	hole	10	-	-		-		-	-	-	-
Symbol							İ									1	1		W		Y	/	7	.1		
Bore	BB	DI	D	Е		EE		F	FP	G	Н	HL	J	LZ	PJ	PL	Т	3 - E	B•C	A	B•C	A	B•C	A	ZK	ZM
¢32	11	M10×	1.25	□58	R	c 3/8	;	11	38	50	44	141	36	166	90	13	□3	8 ;	30	_	68	_	171	_	196	226
φ40	11	M10×	1.25	□65	R	c 3/8		11	38	50	44	141	36	166	90	13	4	5 ;	30	35	68	73	171	176	196	226
φ50	11	M10×	1.25	□76	R	c 1/2		13	42	54	48	155	40	182	98	15	□5	2 :	30	41	72	83	185	196	212	242
φ 6 3	13	M12×	1.5	□90	R	c 1/2		15	46	56	52	163	40	194	102	15		3 3	35	48	81	94	198	211	229	264
φ80	16	M16×	1.5	□11(R	c 3/4		18	56	66	54	184	46	222	110	18	□8	0	35	51	91	107	219	235	257	292
φ100	18	M18×	1.5	□13	5 R	c 3/4		20	58	66	60	192	46	232	116	18		02	40	57	98	115	232	249	272	312
φ125	21	M22×	1.5	□16	5 R	c 1		24	67	76	64	220	56	264	130	23		22	45	57	112	124	265	277	309	354
φ 1 40	22	M24×	1.5	□18	5 R	c 1		26	69	76	72	230	56	276	138	23		38	50	57	119	126	280	287	326	376
φ 1 50	25	M27×	1.5	□196	6 R	c 1		28	71	76	80	240	56	288	146	23		48	50	57	121	128	290	297	338	388
φ 16 0	25	M27×	1.5	□21(R	c 1		31	74	81	80	253	61	304	156	23		60	55	57	129	131	308	310	359	414
φ180	27	M30×	1.5	□23	5 R	c 11/4	4	33	75	85	86	275	71	-	172	28	□1	82	55	-	130	_	330	_	_	_
φ200	29	M33×	1.5	□262	2 R	c 1 ¹ /:	2	37	85	95	90	301	79	-	184	32	□2	00	55	-	140	-	356	-	-	-
φ 22 4	34	M39×	1.5	□292	2 R	c 11/:	2	41	89	95	90	305	79	-	184	32	□2	25	60	-	149	-	365	_	_	_
φ 2 50	37	M42×	1.5	□32	5 R	c 2		46	106	115	90	346	95	-	200	40	2	50	65	-	171	-	411	-	-	-

• Allowance of B is h8, allowance of MM is f8.

Symbol	Bore	ф 3 2	φ 4 0	φ50	ф 6 3	φ80	φ100	φ125	φ140	φ 15 0	φ160	φ180	φ200	ф224	ф 2 50
	Rod B	40	50	63	71	80	100	125	125	140	140	160	180	180	200
WW	Rod C	_	50	50	63	71	80	100	125	125	125	125	140	160	180
	Rod A	-	63	71	80	100	125	140	160	160	180	-	-	_	-
	Rod B	45	45	45	55	55	55	65	65	65	65	65	65	80	80
Х	Rod C	_	45	45	55	55	55	65	65	65	65	65	65	80	80
	Rod A	-	45	55	55	55	65	65	65	65	65	-	-	-	-

LA

70H-8

140H-8

7/14 MPa double acting hydraulic cylinder Double acting single rod/double rod

Unit: mm

•

DF

¢12

φ**15**

φ15

φ**15**

• Bore **\$32 - \$160**

• Bore **\$180 - \$250**

- For the dimensions other than in the diagram above, refer to the specification of the SD type (standard type).
- For the mounting of switches, refer to the dimensional drawings of "Switch set". All the contents other than "Switch mounting dimensions" are identical.

Double rod type (ϕ 32 - ϕ 160/rod B, C) For both ends loaded type

• The switch set (ϕ 32 - ϕ 140) is also within the fabrication range.

70-140H-8/TH8 Bore K

φww		
Rod B • C Nylon tarpaulin Chloroprene	$ \begin{pmatrix} \phi 32 \\ \phi 40 & \bullet \phi 50 \\ \phi 63 & - \phi 100 \\ \phi 125 & - \phi 200 \\ \phi 224 & \bullet \phi 250 \\ \end{pmatrix} $	1/3 Stroke + X 1/3.5 Stroke + X 1/4 Stroke + X 1/5 Stroke + X 1/6 Stroke + X
Conex	$ \begin{pmatrix} \phi 32 \\ \phi 40 & \phi 50 \\ \phi 63 & -\phi 100 \\ \phi 125 & \phi 140 \\ \phi 150 & -\phi 200 \\ \phi 224 & \phi 250 \\ \end{pmatrix} $	1/2 Stroke + X 1/2.5 Stroke + X 1/3 Stroke + X 1/3.5 Stroke + X 1/4 Stroke + X 1/4.5 Stroke + X

	Standard	Semi-st	andard
Material	Nylon tarpaulin	Chloroprene	Conex
Resistible temperature	80°C	130°C	200°C
Notes) • Remembe boots, not • Conex is ti • If decimals number. • The boots	r that the resistible temp for the cylinder. he registered trademark s are included into the ca have been mounted at	peratures shown in the c of Teijin Ltd. alculation results, raise our factory prior to del	table above are for the them to the next whole ivery.
Rod A Nylon tarpaulin Chloroprene	(1/3.5 Strol 0 1/4 Strol 60 1/5 Strol	$\begin{pmatrix} xe + X \\ xe + X \\ xe + X \end{pmatrix}$
Conex	(φ40 φ50 - φ80 φ100 φ125 - φ16	1/2.5 Strol 0 1/3 Strol 1/3.5 Strol 60 1/4 Strol	<pre><c +="" <="" <c="" pre="" x=""></c></pre>

70/140H-8

Dimensional table

Symbol			R	od B	;				Rod C									Rod A								
Bore	А	В	КК	N	IM	S	SL	VD	А	В	ł	٢K	N	1M	S	SL	VD	A	В		KK		MM	S	SL	VD
φ 3 2	25	ф 3 4	M16×1.5	i φ1	8	14	10	10	-	-		_		-	-	-	-	-	-		-		-	-	-	_
φ40	30	φ 4 0	M20×1.5	φ2	2.4	19	11	10	25	ф 36	M16	6×1.5	δ φ1	8	14	10	10	35	¢43	М	24×1.	.5	þ28	24	14	17
φ50	35	ф46	M24×1.5	δ φ2	8	24	14	10	30	φ40	M2(0×1.5	i φ2	2.4	19	11	10	45	φ 5 0	М	30×1.	.5 0	¢35.5	30	16	17
φ 6 3	45	φ55	M30×1.5	δ φ3	5.5	30	16	10	35	φ46	M24	4×1.5	δ φ2	8	24	14	10	60	φ 6 5	М	39×1.	.5 0	þ45	41	20	19
φ80	60	ф 6 5	M39×1.5	φ4	5	41	20	10	45	φ55	M3(0×1.5	δ φ3	5.5	30	16	9	75	φ80	М	48×1.	.5	þ56	50	23	20
φ 1 00	75	φ80	M48×1.5	φ5	6	50	23	10	60	φ 6 5	M39	9×1.5	φ4	5	41	20	10	95	φ 9 5	M	64×2	(þ 71	65	27	23
φ 125	95	φ95	M64×2	φ7	1	65	27	10	75	φ80	M48	8×1.5	φ5	6	50	23	10	120	φ11	5 M	80×2	0	þ 9 0	85	30	17
φ 140	110	φ105	M72×2	φ8	0	75	31	10	80	φ 8 5	M56	6×2	φ6	3	55	24	10	140	φ12	5 M	95×2	0	þ100	-	Drill hole	17
φ 15 0	115	φ110	M76×2	φ8	5	80	33	10	85	φ90	M60	0×2	φ6	7	60	30	10	140	φ12	5 M	95×2	(þ100	-	Drill hole	15
φ 16 0	120	φ115	M80×2	φ9	0	85	33	10	95	φ 9 5	M64	4×2	φ7	'1	65	27	10	150	φ14	0 M	100×2	2 0	þ 112	-	Drill hole	16
φ 18 0	140	φ125	M95×2	φ1	00	-	Drill hole	10	110	φ105	M72	2×2	φ8	0	75	31	10	-	-		-		-	-	-	-
φ 200	150	φ 1 40	M100×2	φ 1	12	-	hole	10	120	φ115	M80	0×2	φ9	0	85	33	10	-	-		-		-	-	-	-
φ224	180	φ 15 0	M120×2	φ1	25	-	hole	10	140	φ125	M98	5×2	φ1	00	-	hole	10	-	-		-		-	-	-	-
φ 250	195	φ 17 0	M130×2	φ1	40	-	hole	10	150	φ 1 40	M10)0×2	φ1	12	-	hole	10	-	-		-		-	-	-	-
Symbol																			W		Х	В	X	S	Z	В
Symbol	E		EE	EH	FP	L	_H	PJ	SB	SS	ST	SU	sv	sw	sx	SY	тs	US	W 3•C	A	X B•C	B A	X B•C	S A	Z B•C	B A
Symbol Bore \$32	E	R	EE Rc 3/8	EH 64	FP 38	ا 35	_H 5±0.15	РЈ 90	SB	SS 98	ST 12	SU 31	SV 112	sw	SX	SY 13	тS 88	US - 109	W 3•C 30	A	X B•C 155	B A –	X B•C 57	S A –	Z B•C 182	B A _
Symbol Bore $\phi 32$ $\phi 40$	E □58 □65	R	EE Rc 3/8 Rc 3/8	EH 64 70	FP 38 38	ا 35 37.5	_H 5±0.15 5±0.15	PJ 90 90	SB	SS 98 98	ST 12 14	SU 31 31	SV 112 112	SW _ _	SX - -	SY 13 13	TS 88 95	US 109 118	W 3•C 30 30	A - 35	X B•C 155 155	B A - 160	X B•C 57 57	S A - 62	Z B•C 182 182	B A - 187
Symbol Bore φ32 φ40 φ50	E □58 □65	R	EE Rc 3/8 Rc 3/8 Rc 3/8 Rc 1/2	EH 64 70 83	FP 38 38 42	ا 35 37.5 45	_H 5±0.15 5±0.15 5±0.15	PJ 90 90 98	SB \$\$11 \$\$11 \$\$14	SS 98 98 108	ST 12 14 17	SU 31 31 34	SV 112 112 122	SW _ _	SX - -	SY 13 13 14	TS 88 95 115	US 109 118 145	W 3•C 30 30 30	A - 35 41	X B•C 155 155 168	B — 160 179	X B•C 57 57 60	S A - 62 71	Z B•C 182 182 196	B A - 187 207
Symbol Bore \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	E 58 65 76 90	R R R	EE Rc 3/8 Rc 3/8 Rc 1/2 Rc 1/2	EH 64 70 83 95	FP 38 38 42 46	ا 35 37.5 45 50	_H 5±0.15 5±0.15 5±0.15 9±0.15	PJ 90 90 98 102	SB \$\phi11\$ \$\phi14\$ \$\phi18\$	SS 98 98 108 106	ST 12 14 17 19	SU 31 31 34 32	SV 112 112 122 122	SW - - -	SX - - -	SY 13 13 14 18	TS 88 95 115 132	US 109 118 145 165	W 3•C 30 30 30 30 35	A - 35 41 48	X B•C 155 155 168 177	B — 160 179 190	X B•C 57 57 60 71	S A - 62 71 84	Z B•C 182 182 196 211	B A - 187 207 224
Symbol Bore \$32 \$40 \$50 \$63 \$80	E 58 65 76 90 11	R R R R R	EE Rc 3/8 Rc 3/8 Rc 1/2 Rc 1/2 Rc 1/2 Rc 3/4	EH 64 70 83 95 115	FP 38 38 42 46 56	1 35 37.5 45 50 60	_H 5±0.15 5±0.15 5±0.15 5±0.15 9±0.15	PJ 90 98 102 110	SB \$\phi11\$ \$\phi14\$ \$\phi18\$ \$\phi18\$ \$\phi18\$	SS 98 98 108 106 124	ST 12 14 17 19 25	SU 31 31 34 32 42	SV 112 112 122 122 144	SW - - -	SX - - -	SY 13 13 14 18 18	TS 88 95 115 132 155	US 109 118 145 165 190	W 3•C 30 30 30 35 35	A - 35 41 48 51	XI B•C 155 155 168 177 198	B — 160 179 190 214	X B•C 57 57 60 71 74	S A - 62 71 84 90	Z B•C 182 182 196 211 235	B A - 187 207 224 251
Symbol Bore \$40 \$50 \$63 \$80 \$100	E 58 65 76 90 11 13	- R - R - R - R - R - R - R - R - R	EE 2c 3/8 2c 3/8 2c 3/8 2c 1/2 2c 1/2 2c 3/4 2c 3/4	EH 64 70 83 95 115 138.5	FP 38 38 42 46 56 58	l 35 37.5 45 50 60 71	_H 5±0.15 5±0.15 5±0.15 9±0.15 9±0.25 ±0.25	PJ 90 98 102 110 116	SB \$\phi11 \$\phi14 \$\phi18 \$\phi18 \$\phi22	SS 98 98 108 106 124 122	ST 12 14 17 19 25 27	SU 31 31 34 32 42 38	SV 112 112 122 122 144 142	sw - - - -	SX - - - -	SY 13 13 14 18 18 22	TS 88 95 115 132 155 190	US 109 118 145 165 190 230	W 3•C 30 30 30 35 35 40	A 335 41 48 51 57	X B•C 155 168 177 198 207	B — 160 179 190 214 224	X B•C 57 60 71 74 85	S A - 62 71 84 90 102	Z B•C 182 182 196 211 235 250	A – 187 207 224 251 267
Symbol Bore \$32 \$40 \$50 \$63 \$80 \$100 \$125	E 58 65 76 90 11 13 16	R R R R R R R R R R R R R R R R R R R	EE Rc 3/8 Rc 3/8 Rc 1/2 Rc 1/2 Rc 1/2 Rc 3/4 Rc 3/4 Rc 3/4 Rc 1	EH 64 70 83 95 115 138.5 167.5	FP 38 38 42 46 56 58 67	L 355 37.5 500 600 711 855	_H 5±0.15 5±0.15 5±0.15 9±0.15 9±0.25 ±0.25 5±0.25	PJ 90 98 102 110 116 130	SB \$\phi11 \$\phi14 \$\phi18 \$\phi18 \$\phi22 \$\phi26	SS 98 98 108 106 124 122 136	ST 12 14 17 19 25 27 32	SU 31 34 32 42 38 41	SV 112 122 122 144 142 156	SW - - - -	SX - - - -	SY 13 13 14 18 18 22 25	TS 88 95 115 132 155 190 224	US 109 118 145 165 190 230 272	W 3•C 30 30 30 35 35 40 45	A - 35 41 48 51 57 57	X B•C 155 155 168 177 198 207 235	B A - 160 179 214 224 247	X B•C 57 60 71 74 85 99	S A - 62 71 84 90 102 111	Z B•C 182 182 196 211 235 250 286	B A - 187 207 224 251 267 298
Symbol Bore \$32 \$40 \$50 \$63 \$80 \$100 \$125 \$140	E 58 65 76 90 111 13 16 18	6 R 6 R 6 R 7 R 7 R 7 R 7 R 7 R 7 R 7 R	EE 2c 3/8 2c 3/8 2c 1/2 2c 1/2 2c 3/4 2c 3/4 2c 1 2c 1	EH 64 70 83 95 115 138.5 167.5 187.5	FP 38 38 42 46 56 58 67 69	l 355 37.5 50 60 71 85 95	_H \$±0.15 \$±0.15 \$±0.15 \$±0.15 \$±0.25 \$±0.25 \$±0.25 \$±0.25	PJ 90 98 102 110 116 130	SB \$\phi11 \$\phi14 \$\phi18 \$\phi18 \$\phi22 \$\phi26 \$\phi26 \$\phi26 \$\phi26	SS 98 98 108 106 124 122 136 144	ST 12 14 17 19 25 27 32 35	SU 31 31 34 32 42 38 41 41	SV 112 122 122 144 142 156 164	SW - - - -	SX - - - - -	SY 13 13 14 18 18 22 25 25	TS 888 955 1115 1322 1555 1900 2224 250	US 109 118 145 165 190 230 272 300	W 3•C 30 30 30 35 35 40 45 50	A 335 41 48 51 57 57 57	X B•C 155 168 177 198 207 235 250	B A - 1600 1790 2144 2244 2477 2577	X B•C 57 60 71 74 85 99 106	S A - 62 71 84 90 102 111 113	Z B•C 182 196 211 235 250 286 302	B A - 187 207 224 251 267 298 309
Symbol Bore \$32 \$40 \$50 \$63 \$80 \$100 \$125 \$140 \$150	E 588 655 766 900 111 133 166 188 199	6 R 6 R 6 R 7	EE ac 3/8 ac 3/8 ac 1/2 ac 1/2 ac 3/4 ac 3/4 ac 3/4 ac 1 ac 3/8 ac 3/8	EH 64 70 83 95 115 138.5 167.5 187.5 204	FP 38 38 42 46 56 58 67 69 71	L 355 37.5 500 600 711 855 955 106	_H 5±0.15 5±0.15 5±0.15 9±0.25 5±0.25 5±0.25 5±0.25 5±0.25	PJ 90 98 102 110 116 130 138 146	SB \$\$\phi11\$ \$\$\phi14\$ \$\$\phi14\$ \$\$\phi14\$ \$\$\phi14\$ \$\$\phi14\$ \$\$\$\phi14\$ \$\$\$\$\$\$\$\$\$\$\$\$\$ \$	SS 98 98 108 106 124 122 136 144 146	ST 12 14 17 19 25 27 32 35 37	SU 31 31 32 42 38 41 41 38	SV 112 112 122 122 144 142 156 164 166	SW - - - - - - - -	SX - - - - - - - -	SY 13 13 14 18 22 25 25 28	TS 88 95 115 132 155 190 224 250 270	US <mark> </mark>	W 39•C 300 300 335 335 400 455 500	A 335 411 488 551 557 557 557	X B•C 155 168 177 198 207 235 250 257	B A - 1600 1799 214 224 2247 2577 264	X B•C 57 60 71 74 85 99 106 111	S A - 62 71 84 90 102 111 113 118	Z B•C 182 196 211 235 250 286 302 315	B A 187 207 224 251 267 298 309 322
Symbol Bore \$42 \$40 \$50 \$63 \$80 \$100 \$125 \$140 \$150 \$150 \$160	E 588 655 766 900 111 133 16 188 919 21	R R R R R R R R R R R S R R S R R S R	EE 20 3/8 20 3/8 20 3/8 20 3/8 20 1/2 20 20 20 20 20 20 20 20 20 20 20 20 20	EH 64 70 83 95 115 138.5 167.5 187.5 204 217	FP 38 38 42 46 56 58 67 69 71 74	L 355 37.5 455 500 600 711 855 955 1066 1122	_H i±0.15 i±0.15 i±0.15 i±0.25 i±	PJ 90 98 102 110 116 130 138 146 156	SB \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	SS 98 98 108 106 124 122 136 144 146 150	ST 12 14 17 19 25 27 32 32 35 37 42	SU 31 34 32 42 38 41 41 38 40	SV 112 122 122 144 142 156 164 166 170	SW - - - - - - - - - - - - -	SX - - - - - - - - -	SY 13 13 14 18 22 25 25 28 31	TS 88 95 115 132 155 190 224 250 270 285	US <mark> </mark>	W 30	A 335 41 48 51 57 57 57 57 57	X B•C 155 155 168 177 198 207 235 250 257 272	B A - 160 179 190 214 224 247 257 264 274	X B•C 57 57 60 71 74 85 99 106 111 122	S A - 62 71 84 90 102 111 113 118 124	Z B•C 182 196 211 235 250 286 302 315 333	B A - 187 207 224 251 267 298 309 322 335
Symbol Bore \$32 \$40 \$50 \$63 \$80 \$100 \$125 \$140 \$150 \$150 \$150 \$160 \$180	E 588 655 766 900 111 133 166 188 199 211 223	R R R R R R R R R R R R S R S R S R R S R R S R	EE 20 3/8 20 3/8 20 3/8 20 3/8 20 1/2 20 20 20 20 20 20 20 20 20 20 20 20 20	EH 64 70 83 95 115 138.5 167.5 187.5 204 217 242.5	FP 38 38 42 46 56 58 67 69 71 74 74	L 355 37.5 455 500 600 711 855 955 1066 1122	_H i±0.15 i±0.15 i±0.15 i±0.15 i±0.25 i±0.25 i±0.25 i±0.25 i±0.25 i±0.25 i±0.25 i±0.25	PJ 90 90 102 110 116 130 138 146 156 172	SB \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	SS 98 98 108 106 124 122 136 144 146 150 172	ST 12 14 17 25 27 32 35 37 42 47	SU 31 34 32 42 38 41 41 38 40 -	SV 112 122 122 144 142 156 164 166 170 -	SW - - - - - - - - - - - - - - - - - - -	SX - - - - - - - - - - 50	 SY 13 13 14 18 22 25 25 28 31 35 	TS 88 95 115 132 155 190 224 250 270 285 315	US <mark> </mark> 109 118 145 165 190 230 272 300 320 345 375	W 30	A 335 41 48 51 57 57 57 57 57 57 	X B•C 155 168 1777 198 207 235 250 257 2257 2252	B A - 1600 1790 214 2247 2577 264 274 -	X B•C 57 57 60 71 74 85 99 106 111 122 123	S A - 62 71 84 90 102 111 113 118 124 -	Z B•C 182 196 211 235 250 286 302 315 333 357	A - 187 207 224 251 267 298 309 322 335 -
Symbol Bore \$32 \$40 \$50 \$63 \$80 \$100 \$125 \$140 \$140 \$150 \$160 \$180 \$200	E 588 655 900 111 133 166 188 199 211 221 223 226	6 R 6 R 7	EE 2003/8 2003/8 2003/8 2003/8 2003/4 2003/2 20000000000	EH 64 70 83 95 115 138.5 167.5 204 217 242.5 271	FP 38 38 42 46 56 58 67 69 71 74 75 85	L 355 37.5 45 500 600 711 855 955 1066 1122 1255 1400	_H \$\pm 0.15 \$\pm 0.15 \$\pm 0.15 \$\pm 0.25 \$\pm 0.25	PJ 90 98 102 110 116 130 138 146 156 172 184	SB \$\phi11 \$\phi14 \$\phi18 \$\phi22 \$\phi26 \$\phi26 \$\phi33 \$\phi33 \$\phi36 \$\phi66\\ \$\phi66\\	SS 98 98 108 106 124 122 136 144 146 150 172 186	ST 12 14 17 25 27 32 35 37 42 47 52	SU 31 31 32 42 38 41 41 38 40 - -	SV 112 122 122 144 142 156 164 166 170 - -	SW - - - - - - - - - 36 40	SX - - - - - - - - - 50 56	 SY 13 13 14 18 22 25 25 28 31 35 39 	TS 88 95 115 132 155 190 224 250 285 315 355	US [109] 1109 1118 145 165 190 2300 2272 3300 3200 3345 3355 425	W 3-C 30 30 30 35 40 40 50 55 55 55 55 55 55 55 55 5	A 35 41 48 51 57 57 57 57 57 	X B•C 155 155 168 177 198 207 235 250 257 272 295 317	B A - 1600 1799 214 224 2247 2577 264 274 - - -	X B•C 57 57 60 71 74 85 99 106 111 122 123 131	S A - 62 71 84 90 102 111 113 118 124 - -	Z B•C 182 196 211 235 250 286 302 315 333 357 385	A - 187 207 224 251 267 298 309 322 335 - - -
Symbol Bore \$32 \$40 \$50 \$63 \$80 \$100 \$125 \$140 \$150 \$150 \$180 \$200 \$224	E 588 655 766 900 111 133 166 188 199 211 223 226 229	6 R 6 R 7	EE 20 3/8 20 3/8 20 3/8 20 3/8 20 1/2 20 20 20 20 20 20 20 20 20 20 20 20 20	EH 64 70 83 95 115 138.5 167.5 204 217 242.5 271 296	FP 38 38 42 46 56 58 67 69 71 74 75 85 89	L 355 37.5 500 600 711 855 955 1066 1122 1255 1400 1500	_H	PJ 90 98 102 110 116 130 138 146 156 172 184	SB \$\$\phi_11\$ \$\$\phi_14\$ \$\$\phi_18\$ \$\$\phi_18\$ \$\$\phi_18\$ \$\$\phi_18\$ \$\$\phi_18\$ \$\$\phi_18\$ \$\$\phi_18\$ \$\$\phi_18\$ \$\$\phi_18\$ \$\$\phi_18\$ \$\$\phi_18\$ \$\$\phi_18\$ \$\$\phi_18\$ \$\$\phi_18\$ \$\$\phi_22\$ \$\$\phi_26\$ \$\$	SS 98 98 108 106 124 122 136 144 146 150 172 186 186	ST 12 14 17 19 25 27 32 35 37 42 47 52 52	SU 31 31 32 42 38 41 41 38 40 - - -	SV 112 122 122 144 142 156 164 166 170 - - -	SW - - - - - - - - - - - - 366 40 40	SX - - - - - - - - - - 50 56 56	 SY 13 14 18 22 25 25 28 31 35 39 39 	TS 88 95 115 132 155 190 224 250 270 285 315 335 395	US 1109 1118 145 165 190 2300 2722 3000 3200 3345 3375 425 475	W 3-C 30 30 33 30 335 335 335 40 45 50 55 555 555 600 1	A 35 41 48 51 57 57 57 57 57 	X B•C 155 168 1777 198 207 235 250 257 272 295 317 326	B A - 1600 179 214 224 224 257 264 274 - - -	X B•C 57 57 60 71 74 85 99 106 111 122 123 131	S A - 62 71 84 90 102 111 113 118 124 - - - -	Z B•C 182 196 211 235 250 286 302 315 333 357 385 399	A - 187 207 224 251 267 298 309 322 335 - - - - - -

• Allowance of B is h8, allowance of MM is f8.

Symbol	Bore	ф 3 2	φ 4 0	φ50	ф 6 3	φ80	φ100	φ125	φ 1 40	φ 15 0	φ160	φ180	φ200	φ224	φ 2 50
	Rod B	40	50	63	71	80	100	125	125	140	140	160	180	180	200
WW	Rod C	_	50	50	63	71	80	100	125	125	125	125	140	160	180
	Rod A	-	63	71	80	100	125	140	160	160	180	-	-	-	-
	Rod B	45	45	45	55	55	55	65	65	65	65	65	65	80	80
Х	Rod C	_	45	45	55	55	55	65	65	65	65	65	65	80	80
	Rod A	-	45	55	55	55	65	65	65	65	65	-	-	-	-

- For the dimensions other than in the diagram above, refer to the specification of the SD type (standard type).
- For the mounting of switches, refer to the dimensional drawings of "Switch set". All the contents other than "Switch mounting dimensions" are identical.

Double rod type (ϕ 32 - ϕ 160/rod B, C) For both ends loaded type

• The switch set (ϕ 32 - ϕ 140) is also within the fabrication range.

	Standard	Semi-st	andard
Material	Nylon tarpaulin	Chloroprene	Conex
Resistible temperature	80°C	130°C	200°C

s) • Remember that the resistore temperatures shown in the table above are for the boots, not for the cylinder.
• Conex is the registered trademark of Teijin Ltd.

 If decimals are included into the calculation results, raise them to the next whole number.

• The boots have been mounted at our factory prior to delivery.

øww		
Rod B • C Nylon tarpaulin Chloroprene	$\left(\begin{array}{c} \phi{32} \\ \phi{40} & \bullet \phi{50} \\ \phi{63} & - \phi{100} \\ \phi{125} & - \phi{200} \\ \phi{224} & - \phi{250} \end{array}\right)$	1/3 Stroke + X 1/3.5 Stroke + X 1/4 Stroke + X 1/5 Stroke + X 1/6 Stroke + X
Conex	$ \begin{pmatrix} \phi 32 \\ \phi 40 & \bullet \phi 50 \\ \phi 63 & - \phi 100 \\ \phi 125 & \bullet \phi 140 \\ \phi 150 & - \phi 200 \\ \phi 224 & \bullet \phi 250 \end{pmatrix} $	1/2 Stroke + X 1/2.5 Stroke + X 1/3 Stroke + X 1/3.5 Stroke + X 1/4 Stroke + X 1/4.5 Stroke + X

Dimensional table

Symbol	Rod B									Ro	d C							F	Rod	Α			
Bore	А	В	KK	MM	S	SL	VD A	В	K	к	MM	S	SL		A	В		KK		MM	S	SL	VD
¢32	25	φ 3 4	M16×1.5	φ18	14	10	10 -		-	-	-	_	-	-	-	-		_		_	-	-	-
φ 4 0	30	φ40	M20×1.5	¢22.4	19	11	10 2	25 φ36	M16>	×1.5	φ18	14	10	10	35	5 043	М	24×1	.5	φ 2 8	24	14	17
φ50	35	φ46	M24×1.5	φ28	24	14	10 3	60 φ40	M20>	×1.5	φ22.4	4 19) 11	10	45	5 φ50	М	30×1	.5	φ 35 .5	30	16	17
φ 6 3	45	φ55	M30×1.5	¢35.5	30	16	10 3	65 φ46	M24>	×1.5	φ28	24	14	10	60	0 φ65	М	39×1	.5	φ45	41	20	19
φ80	60	φ65	M39×1.5	φ45	41	20	10 4	5 φ55	M30>	×1.5	φ 35 .	5 30	16	9	75	5 φ80	М	48×1	.5	φ56	50	23	20
φ 1 00	75	φ80	M48×1.5	φ 5 6	50	23	10 6	60 0 65	M39>	×1.5	φ 4 5	41	20	10	95	5 φ95	M	64×2		φ71	65	27	23
φ125	95	φ95	M64×2	φ71	65	27	10 7	′5 φ80	M48>	×1.5	φ56	50	23	10	120) φ11	5 M	80×2		φ90	85	30	17
φ 1 40	110	φ105	M72×2	φ80	75	31	10 8	60 \$	M56>	×2	ф 6 З	55	5 24	10	-	-		-		-	-	-	-
φ 1 50	115	φ110	M76×2	φ 8 5	80	33	10 8	690	M60>	×2	φ 6 7	60	30	10	-	-		-		-	-	-	-
φ 16 0	120	φ115	M80×2	φ90	85	33	10 9	φ95	M64>	×2	φ71	65	5 27	10	-	-		-		-	-	-	-
φ180	140	φ125	M95×2	φ100	-	Drill hole	10 11	0 \ \ \ \ 0 \ \	5 M72>	×2	φ80	75	5 31	10	-	-		-		-	-	-	-
φ 2 00	150	φ 1 40	M100×2	φ112	-	Drill hole	10 12	20 φ 118	5 M80>	×2	φ90	85	5 33	10	-	-		-		-	-	-	-
φ224	180	φ 1 50	M120×2	φ125	-	Drill hole	10 14	0 φ12	5 M95>	×2	φ100	-	Dril	 10	-	-		-		-	-	-	-
φ 25 0	195	φ 17 0	M130×2	φ140	-	Drill hole	10 15	140 φ125 M95×2 150 φ140 M100×2				2 –	Dril hole	 10	-	-		-		-	-	-	-
Symbol									;														
																	V	v	>	(Δ		7	Δ
Para	AB	AE	AH	A	TA C	AU	E	E	E	FP	HL	PJ	SA	SM	TR	UA	V B•C	V A	> B•C	KA A	ХМ	Z B•C	A A
Bore	ΑΒ	AE	AH 40+0	A	TA C	AU	E	Rc	E 3/8	FP 38	HL 141	PJ 90	SA 205	SM 230	TR 40	UA 62	V B•C 30	V A _	> B•C 203	A A	XM 228	Z B•C 216	A A –
Bore φ32 φ40	ΑΒ φ11 φ11	AE 69	AH 40±0 43+0	A.	D AT 3 8	AU	E	Rc Rc	E 3/8 3/8	FP 38 38	HL 141 141	PJ 90	SA 205 205	SM 230 230	TR 40 46	UA 62 69	V B•C 30 30	V A - 35	> B•C 203 203	(A A - 208	XM 228 228	Z B•C 216 216	A A - 221
Bore φ32 φ40 φ50	AB φ11 φ11 φ14	AE 69 75.5 88	AH 40±0 43±0 50±0	A. .15 1: .15 1: .15 1:	D AT 3 8 3 8 5 8	AU 32 32 35	E 58 65	Rc Rc Rc	E 3/8 3/8 1/2	FP 38 38 42	HL 141 141 155	PJ 90 90 98	SA 205 205 225	SM 230 230 252	TR 40 46 58	UA 62 69 85	V B•C 30 30 30	V A - 35 41	> B•C 203 203 220	(A A 208 231	XM 228 228 247	Z B•C 216 216 235	A A - 221 246
Bore φ32 φ40 φ50 φ63	AB \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	AE 69 75.5 88 105	AH 40±0 43±0 50±0 60±0	Au .15 1: .15 1: .15 1: .15 1:	AT 3 8 3 8 3 8 3 8 3 8 3 10	AU	E 58 65 76 90	Rc Rc Rc Rc Rc	E 3/8 3/8 1/2 1/2	FP 38 38 42 46	HL 141 141 155 163	PJ 90 90 98 102	SA 205 205 225 247	SM 230 230 252 278	TR 40 46 58 65	UA - 62 69 85 98	V B•C 30 30 30 35	V A - 35 41 48	> B•C 203 203 220 220	 (A A - 208 231 253 	XM 228 228 247 271	Z B•C 216 216 235 258	A A - 221 246 271
Bore φ32 φ40 φ50 φ63 φ80	AB \$\$\phi11\$ \$	AE 69 75.5 88 105 127	AH 40±0. 43±0 50±0 60±0 72±0	A(.15 1; .15 1; .15 1; .15 1; .25 2	D AT 3 8 3 8 3 8 3 8 3 8 3 8 3 10 0 12	AU 32 32 35 42 50	E 58 65 76 90 110	Rc Rc Rc Rc Rc Rc	E 3/8 3/8 1/2 1/2 3/4	FP 38 38 42 46 56	HL 141 141 155 163 184	PJ 90 90 98 102	SA 205 205 225 247 284	SM 230 230 252 278 322	TR 40 46 58 65 87	UA - 62 69 85 98	V B•C 30 30 30 35 35	V A 35 41 48 51	> B•C 203 203 220 240 269	 A A 208 231 253 285 	XM 228 228 247 271 307	Z B•C 216 235 258 289	A A 221 246 271 305
Bore φ32 φ40 φ50 φ63 φ80 φ100	AB \$\phi11\$ \$\phi14\$ \$\phi18\$ \$\phi18\$ \$\phi22\$	AE 69 75.5 88 105 127 152.5	AH 40±0 50±0 60±0 72±0 55±0	Au .15 11 .15 11 .15 11 .15 11 .25 20 .25 21	AT A A A A A A A A A A A A A A A A A A	AU 32 32 35 42 50 55	E 58 65 76 90 110	Rc Rc Rc Rc Rc Rc Rc Rc	E 3/8 3/8 1/2 1/2 3/4 3/4	FP 38 38 42 46 56 58	HL 141 141 155 163 184 192	PJ 90 90 98 102 110 116	SA 205 205 225 247 284 302	SM 230 230 252 278 322 342	TR 40 46 58 65 87 109	UA - 62 69 85 98 118 150	V B•C 30 30 30 35 35 40	V A - 35 41 48 51 57	> B•C 203 203 220 240 269 287	 A A 208 231 253 285 304 	XM 228 228 247 271 307 327	Z B•C 216 235 258 289 310	A A 221 246 271 305 327
Bore \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	AB \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	AE 69 75.5 88 105 127 152.5 187.5	AH 40±0. 43±0. 50±0. 60±0. 72±0. 85±0. 105±0.	A4 .15 11 .15 11 .15 11 .15 11 .25 21 .25 22	AT AT AT AT AT AT AT AT AT AT AT AT AT A	AU 32 32 35 42 50 55 66	E 58 65 90 110 135	Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc	E 3/8 3/8 1/2 1/2 3/4 3/4 1	FP 38 38 42 46 56 58 67	HL 1411 1411 1411 1411 1415 1411 1411 141	PJ 90 90 98 102 110 116 130	SA 205 225 247 284 302 352	SM 230 230 252 278 322 342 396	TR 40 46 58 65 87 109 130	UA - 62 69 85 98 118 150 175	V B•C 30 30 30 35 35 40 45	V A - 35 41 48 51 57 57	> B•C 203 203 220 240 269 287 331	 A A 208 231 253 285 304 343 	XM 228 247 271 307 327 375	Z B•C 216 235 258 289 310 360	A A 221 246 271 305 327 372
Bore φ32 φ40 φ50 φ63 φ80 φ100 φ125 φ140	AB \$\overline{11}\$ \$\overline{14}\$ \$\overline{18}\$ \$\overline{18}\$ \$\overline{22}\$ \$\overline{26}\$ \$\	AE 69 75.5 88 105 127 152.5 187.5 207.5	AH 40±0 50±0 60±0 72±0 585±0 105±0 115±0	A4 .15 11 .15 11 .15 11 .15 11 .25 21 .25 22 .25 31	AT AT AT AT AT AT AT AT AT AT AT AT AT A	AU 32 32 35 42 50 55 66 70	E 58 65 90 110 135 165 185	E Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc	E 3/8 3/8 1/2 1/2 3/4 3/4 1 1	FP 38 38 42 46 56 58 67 69	HL 141 155 163 184 192 220 230	PJ 90 98 102 110 116 130	SA 205 225 247 284 302 352 370	SM 230 230 252 278 322 342 396 416	TR 40 46 58 65 87 109 130 145	UA - 62 69 85 98 118 150 175 195	V B•C 30 30 30 35 35 40 45 50	V A - 35 41 48 51 57 57 57 -	> B•C 203 203 220 240 269 287 331 350	(A A 208 231 253 285 304 343 –	XM 228 228 247 271 307 327 375 396	Z B•C 216 235 258 289 310 360 380	A A 221 246 271 305 327 372 -
Bore φ32 φ40 φ50 φ63 φ80 φ100 φ125 φ140 φ150	AB \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	AE 69 75.5 88 105 127 152.5 187.5 207.5 221	AH 40±0 50±0 60±0 72±0 585±0 105±0 115±0 123±0	A(.15 1) .15 1) .15 1) .15 1) .25 2) .25 2) .25 3) .25 3)	AT AT AT AT AT AT AT AT AT AT AT AT AT A	AU 32 32 35 42 50 55 66 70 75	E 58 65 76 90 110 135 165 185 196	E Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc	E 3/8 3/8 1/2 1/2 3/4 3/4 1 1 1 1 1	FP 38 38 42 46 56 58 67 69 71	HL 1411 141 155 163 184 192 220 230 240	PJ 90 90 98 102 110 116 130 138 146	SA 205 225 247 284 302 352 370 390	SM 2300 2320 2522 278 3422 3422 3966 416	TR 40 46 58 65 87 109 130 145 155	UA - 62 69 85 98 118 150 175 195 210	V B•C 30 30 30 35 35 40 45 50 50	V A 35 41 48 51 57 57 57 -	> B•C 203 203 220 240 269 287 331 350 350 365	A A 208 231 253 285 304 343 - -	XM 228 228 247 271 307 327 375 396 413	Z B•C 216 235 258 310 360 380 395	A A 2211 246 2711 305 327 372 - -
Bore \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	AB \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	AE 69 75.5 88 105 127 152.5 187.5 207.5 221 237	AH 40±0 50±0 60±0 72±0 5 85±0 5 105±0 115±0 123±0	A4 .15 11 .15 11 .15 11 .25 21 .25 21 .25 31 .25 31 .25 31 .25 31	AT AT AT AT AT AT AT AT AT AT AT AT AT A	AU 32 32 35 42 50 55 66 70 75 75	E 58 65 76 90 110 135 165 185 196	E Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc	E 3/8 3/8 1/2 1/2 3/4 3/4 1 1 1 1 1	FP 38 38 42 46 56 58 67 69 71 74	HL 1411 1411 1555 1633 1844 1922 2300 2300 2400 253	PJ 90 90 90 102 110 116 130 138 146 156	SA 205 225 247 284 302 352 370 390 403	SM 2300 2300 2522 2788 3222 3422 3426 4166 4388 454	TR 40 46 58 65 87 109 130 145 155 170	UA - 62 69 85 98 118 150 175 195 210 225	V BeC 30 30 30 35 35 40 45 50 50 55	V A 355 411 488 511 577 577 - - - - -	> B•C 203 203 220 240 269 287 331 350 365 383	 A - 208 203 253 253 265 304 343 - /ul>	XM 228 228 247 271 307 327 327 396 413 434	Z B•C 216 235 258 310 360 380 395 418	A 221 246 271 305 327 372 - - - -
Bore φ32 φ40 φ50 φ63 φ80 φ100 φ125 φ140 φ150 φ140 φ150 φ160 φ180	AB \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	AE 69 75.5 88 105 127 152.5 187.5 207.5 221 237 265.5	AH 40±0 50±0 50±0 60±0 72±0 585±0 105±0 115±0 123±0 132±0 148±0	A4 .15 1: .15 1: .15 1: .25 2: .25 3: .25 3: .25 3: .25 3: .25 4:	AT AT AT AT AT AT AT AT AT AT	AU 32 32 35 42 50 55 66 70 75 85	E 58 65 76 90 110 135 165 196 210 2210	E Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc	E 3/8 3/8 1/2 1/2 3/4 3/4 1 1 1 1 1 1 1 1 1 1 1 1	FP 38 38 42 46 56 56 67 69 71 74 74	HL 1411 1411 1411 1411 1411 1411 1411 14	PJ 90 90 90 102 110 130 138 146 156 172	SA 2055 2255 2477 2844 3022 3522 3700 3900 4033 445	SM 2300 2230 2278 3222 3422 3966 4166 4388 4544	TR 40 46 58 65 87 109 130 145 170 185	UA - 62 69 85 98 118 150 175 195 210 225 243	V B-C 30 30 30 35 40 45 50 50 55 55	V A 355 411 488 511 577 577 	> B•C 203 220 240 269 287 331 350 365 383 415	 A - 208 231 253 265 304 343 - /ul>	XM 228 228 247 271 307 327 375 396 413 434 -	Z B•C 216 235 258 289 310 360 380 380 395 418 455	A A 221 246 271 305 327 372 - - - - - - -
Bore \$\overline{43} \$\overline{40} \$\overline{40} \$\overline{63}\\ \$\overline{63}\\ \$\overline{63}\\ \$\overline{63}\\ \$\overli	AB \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	AE 69 75.5 88 105 127 152.5 187.5 207.5 221 237 265.5 296	AH 40±0 50±0 60±0 72±0 585±0 105±0 123±0 132±0 148±0 165±0	A4 .15 11 .15 11 .15 11 .25 24 .25 24 .25 34 .25 34 .25 34 .25 4	AT AT AT AT AT AT AT AT AT AT	AU 32 32 35 42 50 55 66 66 70 75 55 66 66 70 75 55 85 98	E 58 65 76 90 110 135 165 185 196 210 235 262	E Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc	E 3/8 3/8 1/2 1/2 3/4 3/4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FP 38 38 42 46 56 58 67 69 71 71 74 75 85	HL 1411 1411 1555 1633 1843 1922 2200 2300 2300 2300 2303 240 233 2755 301	PJ 90 90 98 102 110 116 130 138 146 152 152 152 152 152 152 152 152 152 152	SA 2005 2205 2247 2447 3002 3302 3370 3300 4003 445 497 2	SM 2300 2522 278 3222 3342 416 438 454 	TR 40 46 58 65 87 109 1300 1455 1700 1855 206	UA - 62 69 85 98 118 150 175 195 210 225 243 272	V B-C 30 30 30 35 40 45 50 55 55 55	V A 35 41 48 51 57 57 - - - - - - - - - - - - -	> B•C 203 220 240 269 287 331 350 365 383 415 454	 A - 208 231 253 265 304 343 - /ul>	XM 228 247 271 307 327 396 413 434 - -	Z B•C 216 235 258 310 360 380 395 418 455 494	A - 221 246 271 305 327 327 - - - - - - - - - - - - -
Bore φ32 φ40 φ50 φ63 φ80 φ100 φ125 φ140 φ150 φ140 φ200 φ224	AB \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	AE 69 75.5 88 105 127 152.5 187.5 207.5 221 237 265.5 296 331	AH 40±0 50±0 60±0 72±0 585±0 105±0 123±0 132±0 5148±0 165±0 185±0	A4 .15 11 .15 11 .15 11 .15 12 .25 22 .25 23 .25 33 .25 34 .25 44 .25 44 .25 44	AT 3 8 3 8 3 8 5 8 4 12 12 12 13 12 14 12	AU 32 32 35 42 50 55 55 666 70 75 75 85 98 115	E 58 65 76 90 110 135 165 185 210 2210 225 2262 292	E Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc Rc	E 3/8 3/8 1/2 1/2 3/4 3/4 1 1 1 1 1 1 1 1/4 1 ¹ /2 1 ¹ /2	FP 38 38 42 46 56 58 67 69 71 74 74 75 85	HL 141 141 155 163 184 192 2200 2300 2400 2533 201 301 3035	PJ 90 90 98 98 102 110 110 110 1130 1136 1156 1156 1156 1154 1184 184 1	SA 205 225 227 284 302 352 370 390 403 403 403 403 535	SM 2300 2522 278 3222 3422 3966 4166 4388 4544 	TR 40 46 58 65 87 109 130 145 155 170 185 206	UA - 62 69 85 98 118 150 175 210 225 243 272 310	V B-C 30 30 30 35 40 45 50 55 55 55 60	V A 35 41 48 51 57 57 - - - - - - - - - - - - - -	> B•C 203 220 240 269 287 331 350 365 383 415 454 480	 A - 208 231 253 285 304 343 - /ul>	XM 228 247 271 307 327 396 413 434 -	Z B•C 216 235 258 289 310 380 380 380 380 385 418 455 494 525	A - 221 246 271 305 327 372 - - - - - - - - - - - - -

• Allowance of B is h8, allowance of MM is f8.

Symbol	Bore	φ 3 2	φ40	φ50	ф 6 3	φ80	φ100	φ125	φ140	φ 1 50	φ160	φ180	φ200	φ224	ф250
10/10/	Rod B	40	50	63	71	80	100	125	125	140	140	160	180	180	200
~~~~	Rod C	-	50	50	63	71	80	100	125	125	125	125	140	160	180
x	Rod B	45	45	45	55	55	55	65	65	65	65	65	65	80	80
~	Rod C	-	45	45	55	55	55	65	65	65	65	65	65	80	80



- For the dimensions other than in the diagram above, refer to the specification of the SD type (standard type).
- For the mounting of switches, refer to the dimensional drawings of "Switch set". All the contents other than "Switch mounting dimensions" are identical.
- The reinforcing plate is not being attached to the LC mounting bracket in case of under 63mm bore.

## Double rod type ( $\phi$ 32 - $\phi$ 160/rod B, C) For both ends loaded type



• The switch set ( $\phi$ 32 -  $\phi$ 140) is also within the fabrication range.

øww			
Rod B • C Nylon tarpaulin Chloroprene	$ \left( \begin{array}{c} \varphi{32} \\ \varphi{40} & \bullet  \varphi{50} \\ \varphi{63} & -  \varphi{100} \\ \varphi{125} & -  \varphi{160} \end{array} \right) $	1/3 1/3.5 1/4 1/5	Stroke + X Stroke + X Stroke + X Stroke + X
Conex	$ \begin{pmatrix} \phi 32 \\ \phi 40 & \bullet \phi 50 \\ \phi 63 & - \phi 100 \\ \phi 125 & \phi 140 \\ \phi 150 & - \phi 160 \end{pmatrix} $	1/2 1/2.5 1/3 1/3.5 1/4	Stroke + X Stroke + X Stroke + X Stroke + X Stroke + X

	Standard	Semi-s	andard
Material	Nylon tarpaulin	Chloroprene	Conex
Resistible temperature	80°C	130°C	200°C

 Remember that the resistore temperatures shown in the table above are for the boots, not for the cylinder.
 Conex is the registered trademark of Teijin Ltd.

 If decimals are included into the calculation results, raise them to the next whole number.

• The boots have been mounted at our factory prior to delivery.

## **Dimensional table**

Symbol								Rod	С											
Bore	А	В	КК		MM		s	SL	VD	А		В		KK		MM		S	SL	VD
<i>ø</i> 32	25	<i>ø</i> 34	M16×1.	.5	<i>ф</i> 18	1	4	10	10	-		_		_		_	-	-	-	_
<i>φ</i> 40	30	<i>φ</i> 40	M20×1.	.5	<i></i> ¢22.4	l 1	9	11	10	25		<i>\$</i> 36	N	/16×1	.5	<i>ф</i> 18	1	4	10	10
$\phi 50$	35	<i>φ</i> 46	M24×1.	.5	<i>ф</i> 28	2	4	14	10	30		<i>φ</i> 40	Ν	/120×1	.5	<i>ф</i> 22.4	1	9	11	10
<i>φ</i> 63	45	<i>ø</i> 55	M30×1.	.5	<i>\$</i> 35.5	5 3	0	16	10	35		<i>φ</i> 46	N	/124×1	.5	<i></i> \$	2	4	14	10
<i>\</i> \$80	60	<i>ф</i> 65	M39×1	.5	<i></i> \$45	4	1	20	10	45		$\phi$ 55	Ν	/I30×1	.5	<i>\$</i> 35.5	5 3	0	16	9
<i>ф</i> 100	75	<i>ø</i> 80	M48×1.	.5	<i>φ</i> 56	5	0	23	10	60		$\phi 65$	N	/139×1	.5	<i>φ</i> 45	4	1	20	10
<i>ф</i> 125	95	<i>\ \ \ \ \ \ \ \ \ \</i>	M64×2		<i>φ</i> 71	6	5	27	10	75		<i>\</i> \$80	Ν	/148×1	.5	<i></i> \$56	5	0	23	10
<i>ф</i> 140	110	<i>ф</i> 105	5 M72×2		<i>\</i> \$80	7	5	31	10	80		<i></i> \$85	N	/156×2		<i>ϕ</i> 63	5	5	24	10
<i>ф</i> 150	115	<i>ф</i> 110	) M76×2		<i></i> \$85	8	0	33	10	85	;	$\phi$ 90	Ν	/160×2		$\phi 67$	6	0	30	10
<i>ф</i> 160	120	<i>ф</i> 115	5 M80×2		<i>φ</i> 90	8	5	33	10	95		<i></i> \$95	Ν	/164×2		<i>φ</i> 71	6	5	27	10
Symbol Bore	AB	AE	AH	AL	AM	AO	AT	E	EE	F	۶P	HL	PJ	SA	TR	UA	W	ХА	ХМ	SM
<i>ø</i> 32	<i>ф</i> 11	69	40±0.15	32	43	13	8	58	Rc3/	8 3	38	130	90	205	40	62	30	203	228	230
<i>φ</i> 40	<i>ф</i> 11	75.5	43±0.15	32	43	13	8	65	Rc3/	8 3	38	130	90	205	46	69	30	203	228	230
<i>φ</i> 50	<i>ф</i> 14	88	50±0.15	35	48	15	8	76	Rc1/2	2 4	42	142	98	225	58	85	30	220	247	252
<i>φ</i> 63	<i>ф</i> 18	105	60±0.15	42	57	18	10	90	Rc1/2	2 4	46	148	102	247	65	98	35	240	271	278
<i>\</i> \$80	<i>ф</i> 18	127	72±0.25	50	68	20	12	110	Rc3/	4 5	56	166	110	284	87	118	35	269	307	322
<i>ф</i> 100	<i>ф</i> 22	152.5	85±0.25	55	75	23	12	135	Rc3/4	4 5	58	172	116	302	109	150	40	287	327	342
<i>ф</i> 125	<i>ф</i> 26	187.5	105±0.25	66	90	29	15	165	Rc1	6	67	196	130	352	130	175	45	331	375	396
<i>ф</i> 140	<i>ф</i> 26	207.5	115±0.25	70	96	30	18	185	Rc1	6	69	204	138	370	145	195	50	350	396	416
<i>ф</i> 150	<i>ф</i> 30	221	123±0.25	75	103	30	18	196	Rc1	7	71	212	146	390	155	210	50	365	413	438
<i>ф</i> 160	<i>ø</i> 33	237	132±0.25	75	106	35	18	210	Rc1	7	74	222	156	403	170	225	55	383	434	454

• Allowance of B is h8, allowance of MM is f8.

## With boots

Symbol	Bore	<i>ø</i> 32	<i>φ</i> 40	<i>φ</i> 50	<i>ф</i> 63	<i>ø</i> 80	<i>ф</i> 100	<i>ф</i> 125	<i>ф</i> 140	<i>ф</i> 150	<i>ф</i> 160
10/10/	Rod B	40	50	63	71	80	100	125	125	140	140
vvvv	Rod C	_	50	50	63	71	80	100	125	125	125
~	Rod B	45	45	45	55	55	55	65	65	65	65
	Rod C	-	45	45	55	55	55	65	65	65	65

70/140H-8

Unit: mm

CAD/DATA is available.



- For the dimensions other than in the diagram above, refer to the specification of the SD type (standard type).
- For the mounting of switches, refer to the dimensional drawings of "Switch set". All the contents other than "Switch mounting dimensions" are identical.

## Double rod type (\phi32 - \phi160/rod B, C) For both ends loaded type



• The switch set ( $\phi$ 32 -  $\phi$ 140) is also within the fabrication range.

## With boots





	Standard	Semi-st	andard
Material	Nylon tarpaulin	Chloroprene	Conex
Resistible temperature	80°C	130°C	200°C

Notes) • Remember that the resistible temperatures shown in the table above are for the boots, not for the cylinder.

- Conex is the registered trademark of Teijin Ltd.
- If decimals are included into the calculation results, raise them to the next whole number.
- The boots have been mounted at our factory prior to delivery.

## **Dimensional table**

Symbol	Rod B											Rod (	:			
Bore	А	В	KK	MM	S	SL	VD	A	В		KK		MM	S	SL	VD
φ <b>3</b> 2	25	φ <b>3</b> 4	M16×1.5	φ <b>1</b> 8	14	10	10	_	_		_		-	_	_	_
φ40	30	φ <b>4</b> 0	M20×1.5	φ22.4	19	11	10	25	φ <b>3</b> 6	1	W16×1.	5	φ18	14	10	10
φ50	35	φ <b>4</b> 6	M24×1.5	φ <b>2</b> 8	24	14	10	30	φ <b>4</b> 0		M20×1.	5	φ22.4	19	11	10
φ <b>6</b> 3	45	φ55	M30×1.5	φ <b>35.5</b>	30	16	10	35	φ <b>4</b> 6	1	M24×1.	5	φ <b>2</b> 8	24	14	10
φ80	60	<b>ф65</b>	M39×1.5	φ <b>4</b> 5	41	20	10	45	φ <b>5</b> 5	1	M30×1.	5	φ <b>35.5</b>	30	16	9
φ100	75	φ <b>8</b> 0	M48×1.5	<b>φ56</b>	50	23	10	60	φ <b>6</b> 5	1	M39×1.	5	φ45	41	20	10
φ125	95	φ <b>9</b> 5	M64×2	φ71	65	27	10	75	φ80		M48×1.	5	φ56	50	23	10
φ <b>1</b> 40	110	φ105	M72×2	φ80	75	31	10	80	φ <b>8</b> 5	1	M56×2		ф63	55	24	10
φ <b>1</b> 50	115	φ110	M76×2	φ85	80	33	10	85	φ90		M60×2		φ67	60	30	10
φ160	120	φ115	M80×2	φ90	85	33	10	95	φ <b>9</b> 5		M64×2		φ71	65	27	10
φ180	140	φ125	M95×2	φ100	-	Drill hole	10	110	φ10	5	M72×2		φ80	75	31	10
φ200	150	φ140	M100×2	φ <b>112</b>	-	Drill hole	10	120	φ11	5 I	M80×2		φ90	85	33	10
φ224	180	φ <b>15</b> 0	M120×2	φ <b>125</b>	-	Drill hole	10	140	φ12	5	M95×2		φ100	-	Drill hole	10
φ <b>25</b> 0	195	φ <b>17</b> 0	M130×2	φ <b>1</b> 40	-	Drill hole	10	150	φ14		V100×2	2	φ112	_	Drill hole	10
Symbol																
Description	BB	Е	EE	F	FB	FE	HL	LL	LZ	PJ	R	TF	UF	w	YP	ZR
bore	11	□58	Rc 3/8	11	ሐ11	62	1/1	130	166	90	40	88	109	30	27	196
φ32 φ40	11	□65	Rc 3/8	11	φ11 	69	1/1	130	166	90	40	95	118	30	27	196
φ <del>-</del> 0 φ50	11	□76	Rc 1/2	13	φ11 φ14	85	155	142	182	98	58	115	145	30	29	212
φ00 φ63	13	□90	Rc 1/2	15	φ14 φ18	98	163	148	194	102	65	132	165	35	31	229
φ80 φ80	16	□110	Rc 3/4	18	φ18 φ18	118	184	166	222	110	87	155	190	35	38	257
φ100	18	□135	Rc 3/4	20	φ22	150	192	172	232	116	109	190	230	40	38	272
φ125	21	□165	Rc 1	24	φ <b>26</b>	175	220	196	264	130	130	224	272	45	43	309
φ <b>1</b> 40	22	 □185	Rc 1	26	φ26	195	230	204	276	138	145	250	300	50	43	326
φ150	25	 □196	Rc 1	28	φ30	210	240	212	288	146	155	270	320	50	43	338
φ160	25	 □210	Rc 1	31	φ33	225	253	222	304	156	170	285	345	55	43	359
φ180	27	□235	Rc 1 ¹ /4	33	φ33	243	275	242	_	172	185	315	375	55	42	_
φ200	29	□262	Rc 1 ¹ /2	37	φ36	272	301	264	_	184	206	355	425	55	48	_
φ224	34	□292	Rc 1 ¹ /2	41	φ42	310	305	264	_	184	230	395	475	60	48	_
1050			1	1						1	1	1	1			1

• Allowance of B is h8, allowance of MM is f8.

Symbol	Bore	φ <b>3</b> 2	φ40	φ50	ф <b>6</b> 3	φ <b>8</b> 0	φ100	φ125	φ140	φ <b>1</b> 50	φ160	φ180	φ200	φ224	φ <b>2</b> 50
1000/	Rod B	40	50	63	71	80	100	125	125	140	140	160	180	180	200
~~~	Rod C	-	50	50	63	71	80	100	125	125	125	125	140	160	180
v	Rod B	45	45	45	55	55	55	65	65	65	65	65	65	80	80
~	Rod C	-	45	45	55	55	55	65	65	65	65	65	65	80	80

Unit: mm

• For the dimensions other than in the diagram above, refer to the specification of the SD type (standard type).

• For the mounting of switches, refer to the dimensional drawings of "Switch set". All the contents other than "Switch mounting dimensions" are identical.

With boots

	Standard	Semi-st	andard
Material	Nylon tarpaulin	Chloroprene	Conex
Resistible temperature	80°C	130°C	200°C

Notes) • Remember that the resistible temperatures shown in the table above are for the boots, not for the cylinder.

• Conex is the registered trademark of Teijin Ltd.

 If decimals are included into the calculation results, raise them to the next whole number.

• The boots have been mounted at our factory prior to delivery.

Rod A	(1/3.5	Stroke + X
Nylon tarpaulin		1/4	Stroke + X
Chloroprene		1/5	Stroke + X
Conex	(1/2.5 1/3 1/3.5 1/4	Stroke + X Stroke + X Stroke + X Stroke + X

70/140H-8

Dimensional table

Symbol			R	od B						Ro	d C							Rod	Α			
Bore	А	В	KK	MM	S	SL	VD	А	В	КК	MM	S	SL	VD	A	В	ĸ	ĸ	MM	S	SL	VD
<i>ø</i> 32	25	<i>ø</i> 34	M16×1.5	<i>ø</i> 18	14	10	10	_	-	_	-	_	-	_	_	_		-	-	-	-	-
<i>φ</i> 40	30	<i>φ</i> 40	M20×1.5	<i>φ</i> 22.4	19	11	10	25	<i>ø</i> 36	M16×1.5	<i>ф</i> 18	14	10	10	35	<i>ø</i> 43	M24	×1.5	<i>ф</i> 28	24	14	17
$\phi 50$	35	<i>ф</i> 46	M24×1.5	<i>ø</i> 28	24	14	10	30	<i>φ</i> 40	M20×1.5	<i>¢</i> 22.4	19	11	10	45	<i>φ</i> 50	M30	×1.5	<i>\$</i> 35.5	30	16	17
<i>\</i> \$63	45	<i>φ</i> 55	M30×1.5	¢35.5	30	16	10	35	<i>ф</i> 46	M24×1.5	<i>ф</i> 28	24	14	10	60	<i>¢</i> 65	M39	×1.5	<i>φ</i> 45	41	20	19
<i>\</i> \$80	60	<i></i> 65	M39×1.5	<i>ø</i> 45	41	20	10	45	<i>φ</i> 55	M30×1.5	<i>¢</i> 35.5	30	16	9	75	<i></i> \$80	M48	×1.5	<i>ф</i> 56	50	23	20
<i>ф</i> 100	75	<i>ø</i> 80	M48×1.5	<i>ø</i> 56	50	23	10	60	<i>ø</i> 65	M39×1.5	<i>φ</i> 45	41	20	10	95	<i></i> \$95	M64	×2	<i>φ</i> 71	65	27	23
<i>ф</i> 125	95	<i></i> ø95	M64×2	<i>φ</i> 71	65	27	10	75	<i>ø</i> 80	M48×1.5	<i>ф</i> 56	50	23	10	120	<i>ф</i> 115	M80	×2	<i></i> \$90	85	33	17
<i>ф</i> 140	110	<i>ф</i> 105	M72×2	<i>ø</i> 80	75	31	10	80	<i>ø</i> 85	M56×2	<i>ф</i> 63	55	24	10	140	¢125	M95	×2	<i>ф</i> 100	-	Drill hole	17
ϕ 150	115	<i>ф</i> 110	M76×2	<i>ø</i> 85	80	33	10	85	<i>ф</i> 90	M60×2	<i>ф</i> 67	60	30	10	140	¢125	M95	×2	<i>φ</i> 100	-	Drill hole	15
<i>ф</i> 160	120	<i>ф</i> 115	M80×2	<i>φ</i> 90	85	33	10	95	<i>ø</i> 95	M64×2	<i>φ</i> 71	65	27	10	150	<i>ø</i> 140	M10	0×2	<i>ф</i> 112	-	Drill hole	16
Symbol											Minimum					W	1	>	۲Y		ZJ	
Bore	BB	E	E E	E F	В	FE	FP	HI	_ N	F PJ		R	T	F	UF	Dec	Δ	PeC	Δ	B	c	A
											PN					B.C		D.C		10	U	
<i>ø</i> 32	11	□5	8 Rc	3/8 φ [.]	11	62	38	14	1 2	8 90	91	40	8	8	109	30	-	99	-	17	'1	-
φ32 φ40	11 11		8 Rc3 5 Rc3	3/8 φ [.] 3/8 φ [.]	11	62 69	38 38	14 14	1 2 1 2	8 90 8 90	91 91	40 46	8	8 ⁻	109 118	30 30	- 35	99 99	- 104	17	71 71	– 176
 φ32 φ40 φ50 	11 11 11		8 Rci 5 Rci 6 Rci	3/8 φ [.] 3/8 φ [.] 3/8 φ [.]	11 11 14	62 69 85	38 38 42	14 14 15	1 24 1 24 5 34	8 90 8 90 3 98	91 91 91 97	40 46 58	8 9 11	8 ⁻ 5 ⁻ 5 ⁻	109 118 145	30 30 30 30	- 35 41	99 99 99 104.5	- 104 115.5	17 17 17 18	71 71 71 71 75	- 176 196
 φ32 φ40 φ50 φ63 	11 11 11 13		8 Rc3 5 Rc3 6 Rc4 0 Rc4	3/8 φ [*] 3/8 φ [*] 1/2 φ [*] 1/2 φ [*]	11 11 14 18	62 69 85 98	38 38 42 46	14 14 15 16	1 23 1 23 5 33 3 43	8 90 8 90 3 98 3 102	91 91 97 106	40 46 58 65	8 9 11 13	8 · 5 · 5 ·	109 118 145 165	30 30 30 30 35	- 35 41 48	99 99 104.5 110.5	- 104 115.5 123.5	17 17 17 18 18	71 71 71 71 75 7 18	– 176 196 211
 φ32 φ40 φ50 φ63 φ80 	11 11 11 13 16		8 Rcí 5 Rcí 6 Rcí 0 Rcí 10 Rcí	β/8 φ [*] β/8 φ [*] 1/2 φ [*] 1/2 φ [*] β/4 φ [*]	111 111 14 18 18	62 69 85 98 118	38 38 42 46 56	14 14 15 16 18	1 20 1 20 5 30 3 40 4	8 90 8 90 3 98 3 102 3 110	91 91 97 106 119	40 46 58 65 87	8 9 11 13 15	8 5 5 2 5	109 118 145 165 190	30 30 30 35 35	- 35 41 48 51	99 99 104.5 110.5 124.5	- 104 115.5 123.5 140.5	17 17 18 18 19 21	71 71 35 9 2	- 176 196 211 235
 φ32 φ40 φ50 φ63 φ80 φ100 	11 11 11 13 16 18		Rci 8 Rci 5 Rci 6 Rci 0 Rci 10 Rci 335 Rci	3/8 \$\phi\$ 3/8 \$\phi\$ 3/8 \$\phi\$ 3/8 \$\phi\$ 1/2 \$\phi\$ 3/4 \$\phi\$	111 111 14 18 18 22	62 69 85 98 118 150	38 38 42 46 56 58	14 14 15 16 18 19	1 24 1 24 5 34 3 44 4 44 2 55	8 90 8 90 3 98 3 102 3 110 3 116	91 91 97 106 119 126	40 46 58 65 87 109	8 9 11 13 15 19	8 ⁻ 5 ⁻ 2 ⁻ 5 ⁻ 0 ⁻	109 118 145 165 190 230	30 30 30 30 35 35 40	- 35 41 48 51 57	99 99 104.5 110.5 124.5 129.5	- 104 115.5 123.5 140.5 146.5	17 17 18 18 19 21 23	71 71 35 9 2 12	- 176 196 211 235 249
 φ32 φ40 φ50 φ63 φ80 φ100 φ125 	11 11 13 16 18 21		8 Rci 5 Rci 6 Rci 10 Rci 335 Rci	λ/8 φ 3/8 φ 3/8 φ 1/2 φ 3/4 φ 3/4 φ	111 111 14 18 18 22 26	62 69 85 98 118 150	38 38 42 46 56 58 67	14 14 15 16 18 19 22	1 20 1 20 5 30 3 40 4 40 2 50 0 50	90 8 90 3 98 3 102 3 110 3 116 8 130	91 91 97 106 119 126 145	40 46 58 65 87 109 130	8 9 11 13 15 19 22	8 - 5 - 2 - 5 - 5 - 2	109 118 145 165 190 230 272	30 30 30 35 35 40 45	- 35 41 48 51 57 57	99 99 104.5 110.5 124.5 129.5 148	- 104 115.5 123.5 140.5 146.5 160	17 17 18 18 19 21 23 26	71 71 71 35 73 9 12 12 15	- 176 196 211 235 249 277
 \$\$\phi32\$ \$\$\phi40\$ \$\$\phi50\$ \$\$\phi63\$ \$\$\phi80\$ \$\$\phi100\$ \$\$\phi125\$ \$	11 11 13 16 18 21 22		8 Rc2 5 Rc2 6 Rc2 0 Rc2 10 Rc2 35 Rc2 65 Rc2	β/8 φ ⁺ 3/8 φ ⁺ 3/8 φ ⁺ 1/2 φ ⁺ 3/4 φ ⁺ 3/4 φ ⁺ 1 φ ⁺	11 11 14 18 18 22 26 26	62 69 85 98 118 150 175 195	38 38 42 46 56 58 67 69	14 14 15 16 18 19 22 23	1 23 1 24 5 33 3 43 4 43 2 53 0 54 0 74	8 90 8 90 3 98 3 102 3 110 3 116 8 130	91 91 97 106 119 126 145 152	40 46 58 65 87 109 130 145	8 9 11 13 15 19 22 25	8 5 5 7 2 7 5 7 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	109 118 145 165 190 230 272 300	30 30 <td>- 35 41 48 51 57 57 57</td> <td>99 99 104.5 110.5 124.5 129.5 148 149</td> <td>- 104 115.5 123.5 140.5 146.5 160 156</td> <td>17 17 18 18 19 21 23 26 28</td> <td>71 71 35 9 32 35 35 36 37</td> <td>- 176 211 235 249 277 287</td>	- 35 41 48 51 57 57 57	99 99 104.5 110.5 124.5 129.5 148 149	- 104 115.5 123.5 140.5 146.5 160 156	17 17 18 18 19 21 23 26 28	71 71 35 9 32 35 35 36 37	- 176 211 235 249 277 287
 \$\$\phi32\$ \$\$\phi40\$ \$\$\phi50\$ \$\$\phi63\$ \$\$\phi80\$ \$\$\phi100\$ \$\$\$\phi125\$ \$	11 11 13 16 18 21 22 25		8 Rci 5 Rci 6 Rci 0 Rci 10 Rci 35 Rci 65 Rci 865 Rci 966 Rci	3/8 \$\phi\$ 3/8 \$\phi\$ 3/8 \$\phi\$ 3/8 \$\phi\$ 3/8 \$\phi\$ 3/2 \$\phi\$ 3/4 \$\phi\$	111 114 184 183 222 266 226	62 69 85 98 118 150 175 195 210	38 38 42 46 56 58 67 69 71	14 14 15 16 18 19 22 23 23 24	1 24 1 24 5 33 3 43 4 43 2 53 0 54 0 74 0 74	8 90 8 90 3 98 3 102 3 110 3 116 8 130 8 138 8 146	91 91 97 106 119 126 145 152 154	40 46 58 65 87 109 130 145 155	8 9 11 13 15 19 22 25 27	8 1 5 1 5 1 2 1 5 1 6 1 1 <td>109 118 145 165 190 230 272 300 320</td> <td>30 30 <td>- 35 41 48 51 57 57 57 57</td><td>99 99 104.5 110.5 124.5 129.5 148 149 155</td><td>- 104 115.5 123.5 140.5 146.5 160 156 162</td><td>17 17 17 17 17 18 19 21 23 26 28 29</td><td>71 71 35 9 2 9 22 35 10</td><td>- 176 211 235 249 277 287 297</td></td>	109 118 145 165 190 230 272 300 320	30 30 <td>- 35 41 48 51 57 57 57 57</td> <td>99 99 104.5 110.5 124.5 129.5 148 149 155</td> <td>- 104 115.5 123.5 140.5 146.5 160 156 162</td> <td>17 17 17 17 17 18 19 21 23 26 28 29</td> <td>71 71 35 9 2 9 22 35 10</td> <td>- 176 211 235 249 277 287 297</td>	- 35 41 48 51 57 57 57 57	99 99 104.5 110.5 124.5 129.5 148 149 155	- 104 115.5 123.5 140.5 146.5 160 156 162	17 17 17 17 17 18 19 21 23 26 28 29	71 71 35 9 2 9 22 35 10	- 176 211 235 249 277 287 297

• Allowance of B is h8, allowance of MM is f8.

Symbol	Bore	<i>ø</i> 32	<i>φ</i> 40	<i>φ</i> 50	<i>ф</i> 63	<i>ø</i> 80	<i>ø</i> 100	<i>ø</i> 125	<i>ф</i> 140	<i>ø</i> 150	<i>ф</i> 160
	Rod B	40	50	63	71	80	100	125	125	140	140
WW	Rod C	-	50	50	63	71	80	100	125	125	125
	Rod A	-	63	71	80	100	125	140	160	160	180
	Rod B	45	45	45	55	55	55	65	65	65	65
Х	Rod C	_	45	45	55	55	55	65	65	65	65
	Rod A	-	45	55	55	55	65	65	65	65	65

FB For 7 MPa

70H-8

1 FB Bore

В В Stroke

В Α

В

7/14 MPa double acting hydraulic cylinder Double acting single rod/double rod

Unit: mm

70-140H-8/TH8 Bore B available.

For the rod dia. of \$100 or more, a drill hole will be applied. VD 2-DF

35

O

Rod dia.	OF	DF
φ 1 00	φ99.5	φ12
φ112	φ111.5	φ15
φ125	φ124.5	φ 1 5
φ 14 0	φ139.5	φ15

- For the dimensions other than in the diagram above, refer to the specification of the SD type (standard type).
- For the mounting of switches, refer to the dimensional drawings of "Switch set". All the contents other than "Switch mounting dimensions" are identical.

Double rod type (032 - 0160/rod B, C) For both ends loaded type

• The switch set (ϕ 32 - ϕ 140) is also within the fabrication range.

With boots

70-140H-8/TH8 Bore K

	Standard	Semi-st	andard
Material	Nylon tarpaulin	Chloroprene	Conex
Resistible temperature	80°C	130°C	200°C

Notes) • Remember that the resistible temperatures shown in the table above are for the boots, not for the cylinder.

- Conex is the registered trademark of Teijin Ltd.
- If decimals are included into the calculation results, raise them to the next whole number.
- The boots have been mounted at our factory prior to delivery.

Dimensional table

Symbol				Rod	В				Rod C							
Bore	А	В	КК		MM	S	SL	VD	А	В	K	к	MM	S	SL	VD
φ 3 2	25	φ 3 4	M16×1.	5	φ18	14	10	10	-	-	-	-	_	-	-	_
φ 4 0	30	φ40	M20×1.	5	φ22.4	19	11	10	25	φ36	M16	×1.5	φ 1 8	14	10	10
φ50	35	φ46	M24×1.	5	φ 2 8	24	14	10	30	φ40	M20	×1.5	φ22.4	19	11	10
φ 6 3	45	φ55	M30×1.	5	φ 35.5	30	16	10	35	ф 4 6	M24	×1.5	φ 2 8	24	14	10
φ80	60	φ65	M39×1.	5	φ 4 5	41	20	10	45	φ55	M30	×1.5	φ 35 .5	30	16	9
φ100	75	φ80	M48×1.	5	φ 5 6	50	23	10	60	ф 6 5	M39	×1.5	ф 4 5	41	20	10
φ125	95	φ95	M64×2		φ 7 1	65	27	10	75	φ80	M48	×1.5	φ56	50	23	10
φ 1 40	110	φ105	M72×2		φ80	75	31	10	80	φ 8 5	M56	×2	ф 6 3	55	24	10
φ 1 50	115	φ 110	M76×2		φ 8 5	80	33	10	85	φ90	M60	×2	φ 6 7	60	30	10
φ 16 0	120	φ 115	M80×2		φ90	85	33	10	95	φ95	M64	×2	φ 7 1	65	27	10
φ180	140	φ 125	M95×2		φ100	-	Drill hole	10	110	φ 105	M72	×2	φ80	75	31	10
φ200	150	φ 1 40	M100×2	2	φ112	-	Drill hole	10	120	φ115	M80	×2	φ90	85	33	10
φ224	180	φ 15 0	M120×2	2	φ125	-	Drill hole	10	140	φ125	M95	×2	φ100	-	Drill hole	10
φ 25 0	195	φ 17 0	M130×2	2	φ 1 40	-	Drill hole	10	150	φ 1 40	M10	0×2	φ112	-	brill	10
Symbol																
Poro	Е		EE	F	FB	FE	FP	HL	LZ	PJ	R	TF	UF	W	YR	ZF
φ32	□58	R	c 3/8	11	φ11	62	38	141	166	90	40	88	109	30	226	182
φ40	□65	R	c 3/8	11	¢11	69	38	141	166	90	46	95	118	30	226	182
φ50	□76	R	c 1/2	13	φ14	85	42	155	182	98	58	115	145	30	242	198
φ 6 3	□90	R	c 1/2	15	φ18	98	46	163	194	102	65	132	165	35	264	213
φ80	□110	R	c 3/4	18	φ18	118	56	184	222	110	87	155	190	35	292	237
φ100	□135	R	c 3/4	20	φ 2 2	150	58	192	232	116	109	190	230	40	312	252
φ125	□165	R	c 1	24	¢26	175	67	220	264	130	130	224	272	45	354	289
φ 1 40	□185	R	c 1	26	¢26	195	69	230	276	138	145	250	300	50	376	306
φ 1 50	□196	R	c 1	28	φ 3 0	210	71	240	288	146	155	270	320	50	388	318
φ 16 0	□210	R	c 1	31	¢33	225	74	253	304	156	170	285	345	55	414	339
φ 1 80	□235	R	c 1 1/4	33	φ33	243	75	275	- 1	172	185	315	375	55	_	363
φ 200	□262	R	c 1 ¹ /2	37	φ 3 6	272	85	301	-	184	206	355	425	55	-	393
φ224	□292	R	c 1 ¹ /2	41	φ42	310	89	305	-	184	230	395	475	60	_	406
φ 2 50	□325	R	c 2	46	φ 4 5	335	106	346	-	200	250	425	515	65	-	457

• Allowance of B is h8, allowance of MM is f8.

Symbol	Bore	φ 3 2	φ40	φ50	ф 6 3	φ 8 0	φ100	φ125	φ140	φ 1 50	φ160	φ180	φ200	φ224	φ 2 50
10/10/	Rod B	40	50	63	71	80	100	125	125	140	140	160	180	180	200
~~~	Rod C	-	50	50	63	71	80	100	125	125	125	125	140	160	180
v	Rod B	45	45	45	55	55	55	65	65	65	65	65	65	80	80
~	Rod C	-	45	45	55	55	55	65	65	65	65	65	65	80	80

Unit: mm



• For the dimensions other than in the diagram above, refer to the specification of the SD type (standard type).

### With boots



70-140H-8/TH8 Bore K

	Standard	Semi-st	andard
Material	Nylon tarpaulin	Chloroprene	Conex
Resistible temperature	80°C	130°C	200°C

Notes) • Remember that the resistible temperatures shown in the table above are for the boots, not for the cylinder.

- Conex is the registered trademark of Teijin Ltd.
- If decimals are included into the calculation results, raise them to the next whole number.
- The boots have been mounted at our factory prior to delivery.

## **Dimensional table**

Symbol		Rod A					F				ΓV			<b>D</b> 1	-	-		14/				
Bore	Α	В	KK	MM	S	SL	VD	BB	E	EE	FB	FE	FΥ		LY	PJ	ĸ	IF	UF	vv	VVY	ΥP
φ40	35	ф <b>4</b> 3	M24×1.5	¢28	24	14	10	11	□65	Rc 3/8	φ11	69	18	130	148	90	46	95	118	35	53	27
φ50	45	φ <b>5</b> 0	M30×1.5	¢35.5	30	16	10	11	□76	Rc 1/2	φ14	85	20	142	162	98	58	115	145	41	61	29
φ63	60	ф <b>6</b> 5	M39×1.5	ф45	41	20	10	13	□90	Rc 1/2	φ18	98	24	148	172	102	65	132	165	48	72	31
φ80	75	φ <b>8</b> 0	M48×1.5	φ <b>5</b> 6	50	23	8	16	□110	Rc 3/4	φ18	118	30	166	196	110	87	155	190	51	81	38
φ100	95	φ <b>9</b> 5	M64×2	φ71	65	27	11	18	□135	Rc 3/4	φ22	150	32	172	204	116	109	190	230	57	89	38
φ125	120	φ115	M80×2	φ90	85	30	10	21	□165	Rc1	φ26	175	41	196	237	130	130	224	272	57	98	43
φ <b>1</b> 40	140	φ125	M95×2	φ100	_	Drill hole	13	22	□185	Rc1	φ26	195	43	204	247	138	145	250	300	57	100	43
φ <b>1</b> 50	140	φ125	M95×2	φ100	-	Drill hole	13	25	□196	Rc1	φ <b>3</b> 0	210	43	212	255	146	155	270	320	57	100	43
φ <b>16</b> 0	150	φ <b>1</b> 40	M100×2	φ112	_	Drill hole	15	25	□210	Rc1	φ33	225	46	222	268	156	170	285	345	57	103	43

• Allowance of B is h8, allowance of MM is f8.

#### With boots

Symbol	Bore	φ40	φ50	<b>ф6</b> З	φ80	φ100	φ125	φ <b>1</b> 40	φ <b>1</b> 50	φ160
WW	Rod A	63	71	80	100	125	140	160	160	180
Х	Rod A	45	55	55	55	65	65	65	65	65

64

Unit: mm







- For the dimensions other than in the diagram above, refer to the specification of the SD type (standard type).
- For the mounting of switches, refer to the dimensional drawings of "Switch set". All the contents other than "Switch mounting dimensions" are identical.

## Double rod type ( $\phi$ 32 - $\phi$ 160/rod B, C) For both ends loaded type



• The switch set ( $\phi$ 32 -  $\phi$ 140) is also within the fabrication range.

## With boots



70-140H-8/TH8 Bore K

	Standard	Semi-st	andard
Material	Nylon tarpaulin	Chloroprene	Conex
Resistible temperature	80°C	130°C	200°C

Notes) • Remember that the resistible temperatures shown in the table above are for the boots, not for the cylinder.

- Conex is the registered trademark of Teijin Ltd.
- If decimals are included into the calculation results, raise them to the next whole number.
- The boots have been mounted at our factory prior to delivery.

# 70/140H-8

## **Dimensional table**

Symbol			Rod		Rod C										
Bore	А	В	КК	MM	S	SL	VD	А	В	K	<	MM	S	SL	VD
φ <b>3</b> 2	25	φ <b>3</b> 4	M16×1.5	φ <b>1</b> 8	14	10	10	-	-	-	-	_	-	-	-
φ <b>4</b> 0	30	φ40	M20×1.5	φ22.4	19	11	10	25	<b>ф</b> 36	M16	<1.5	φ <b>1</b> 8	14	10	10
φ50	35	φ46	M24×1.5	φ <b>2</b> 8	24	14	10	30	φ <b>4</b> 0	M20	×1.5	φ22.4	19	11	10
φ <b>6</b> 3	45	φ55	M30×1.5	φ <b>35.5</b>	30	16	10	35	ф <b>4</b> 6	M24;	<1.5	¢28	24	14	10
φ80	60	<b>φ65</b>	M39×1.5	φ <b>4</b> 5	41	20	10	45	φ55	M30	<1.5	¢35.5	30	16	10
φ100	75	φ80	M48×1.5	φ56	50	23	10	60	ф <b>6</b> 5	M39:	<1.5	φ <b>4</b> 5	41	20	10
φ125	95	φ95	M64×2	φ71	65	27	10	75	φ80	M48	<1.5	φ56	50	23	10
φ <b>1</b> 40	110	φ105	M72×2	φ80	75	31	10	80	φ <b>8</b> 5	M56	<2	<b>ф6</b> З	55	24	10
φ <b>15</b> 0	115	φ110	M76×2	φ <b>8</b> 5	80	33	10	85	φ90	M60	<2	<b>φ67</b>	60	30	10
φ160	120	φ115	M80×2	φ90	85	33	10	95	φ <b>9</b> 5	M64	<2	φ71	65	27	10
φ180	140	φ125	M95×2	φ <b>1</b> 00	-	Drill hole	10	110	φ105	M72:	<2	φ80	75	31	10
φ200	150	φ140	M100×2	φ <b>112</b>	-	Drill hole	10	120	φ115	M80	<2	φ90	85	33	10
φ224	180	φ <b>15</b> 0	M120×2	φ <b>125</b>	-	Drill hole	10	140	φ125	M95	<2	φ <b>1</b> 00	-	Drill hole	10
φ250	195	φ <b>17</b> 0	M130×2	φ <b>1</b> 40	-	Drill hole	10	150	φ140	M10	0×2	φ112	-	Drill hole	10
Symbol															
Jyinbu	BB	Е	EE	FB	FE	FY	LL	LX	LY	PJ	R	TF	UF	W	YP
Bore	44		De 2/9	+11	60	10	120	100	142	00	40	00	100	20	07
φ32	11		RC 3/8	φ11	62	13	130		143	90	40	05	109	30	27
φ40 450	11		RC 3/0	φ11	09	10	140	100	143	90	40 59	90	145	30	20
φ50	12		RC 1/2	ψ14	00	20	142	107	160	102	50	122	145	30	29
ψ03	10		RC 1/2	ψιο	90	20	140		100	1102	00	152	100	30 25	20
ψ00 ±100	10		Rc 3/4	ψ10 422	150	24	172	220	200	116	100	100	220	40	20
ψ100 ±125	21		Rc 1	ψ22	175	20	106	240	200	130	130	224	230	40	13
φ120 <u> </u> <u> </u>	21		Rc 1	φ20	105	37	204	287	223	138	1/15	250	300	50	13
φ140 ±150	22		Rc 1	φ20	210	20	204	207	241	146	145	230	220	50	43
φ130 	25		Rc 1	ψ30 433	210	11	212	299	201	140	170	285	345	55	43
φ100 	20		Rc 11/4	φ33	2/3	41	242	. 314	203	172	185	315	375	55	43
φ100 φ200	20	□200	Rc 1 ¹ /2	φ35 φ36	243	51	242		315	18/	206	355	125	55	18
ψ200 4224	29	□202 □202	Rc 11/2	ψ30 	310	50	204		200	18/	200	305	425	60	40
ψ224 d250	37	□292 □295	Rc 2	ψ4Z	325	50	204		265	200	250	125	515	65	40 60
φ <b>25</b> 0	37	□325	RC 2	¢45	335	65	300	-   (	365	200	250	425	515	65	60

• Allowance of B is h8, allowance of MM is f8.

Symbol	Bore	ф <b>3</b> 2	φ <b>4</b> 0	φ50	φ63	φ80	φ100	φ125	φ <b>1</b> 40	φ150	φ160	φ180	φ200	φ224	¢250
	Rod B	40	50	63	71	80	100	125	125	140	140	160	180	180	200
vvvv	Rod C	-	50	50	63	71	80	100	125	125	125	125	140	160	180
~	Rod B	45	45	45	55	55	55	65	65	65	65	65	65	80	80
~	Rod C	-	45	45	55	55	55	65	65	65	65	65	65	80	80

Unit: mm

CAD/DATA is 70-140H-8/TH8 Bore B.C available.



• For the dimensions other than in the diagram above, refer to the specification of the SD type (standard type).

## • For the mounting of switches, refer to the dimensional drawings of "Switch set". All the contents other than "Switch mounting dimensions" are identical.

## Double rod type ( $\phi$ 32 - $\phi$ 160/rod B, C) For both ends loaded type



[•] The switch set ( $\phi$ 32 -  $\phi$ 140) is also within the fabrication range.

•ww		
Rod B • C Nylon tarpaulin Chloroprene	$ \begin{pmatrix} \phi 32 \\ \phi 40 & \bullet \phi 50 \\ \phi 63 & - \phi 100 \\ \phi 125 & - \phi 200 \\ \phi 224 & \bullet \phi 250 \end{pmatrix} $	1/3         Stroke + X           1/3.5         Stroke + X           1/4         Stroke + X           1/5         Stroke + X           1/6         Stroke + X
Conex	$ \begin{pmatrix} \phi 32 \\ \phi 40 & \bullet \phi 50 \\ \phi 63 & - \phi 100 \\ \phi 125 & \bullet \phi 140 \\ \phi 150 & - \phi 200 \\ \phi 224 & \bullet \phi 250 \end{pmatrix} $	1/2         Stroke + X           1/2.5         Stroke + X           1/3         Stroke + X           1/3.5         Stroke + X           1/4         Stroke + X           1/4.5         Stroke + X

	Standard	Semi-standard								
Material	Nylon tarpaulin	Chloroprene	Conex							
Resistible temperature	80°C	130°C	200°C							
Notes) • Remembe boots, not • Conex is ti • If decimals number. • The boots	r that the resistible temp for the cylinder. he registered trademark s are included into the ca have been mounted at	peratures shown in the c of Teijin Ltd. alculation results, raise our factory prior to del	table above are for the them to the next whole ivery.							
Rod A Nylon tarpaulin Chloroprene	(	1/3.5 Strol 0 1/4 Strol 60 1/5 Strol	$\begin{pmatrix} xe + X \\ xe + X \\ xe + X \end{pmatrix}$							
Conex	(	1/2.5 Strol 0 1/3 Strol 1/3.5 Strol 60 1/4 Strol	<pre><c +="" <="" <c="" pre="" x=""></c></pre>							

⁷⁰⁻¹⁴⁰H-8/TH8 Bore K

# 70/140H-8

## **Dimensional table**

Symbol			Ro	od B						Ro	d C				Rod A							
Bore	А	В	КК	MM	S	SL	VD	Α	В	KK	MM	S	SL	VD	Α	В	KK	MM	S	SL	VD	
φ <b>3</b> 2	25	φ34	M16×1.5	φ18	14	10	10	-	Ι	-	-	-	-	-	-	_	_	-	Ι	-	_	
φ40	30	φ <b>4</b> 0	M20×1.5	¢22.4	19	11	10	25	ф <b>3</b> 6	M16×1.5	φ18	14	10	10	35	ф <b>4</b> 3	M24×1.5	φ <b>2</b> 8	24	14	17	
φ50	35	ф46	M24×1.5	φ28	24	14	10	30	φ40	M20×1.5	φ22.4	19	11	10	45	φ50	M30×1.5	¢35.5	30	16	17	
φ <b>6</b> 3	45	φ55	M30×1.5	¢35.5	30	16	10	35	φ46	M24×1.5	φ28	24	14	10	60	ф <b>6</b> 5	M39×1.5	φ <b>4</b> 5	41	20	19	
φ80	60	ф <b>6</b> 5	M39×1.5	φ45	41	20	10	45	φ55	M30×1.5	φ <b>35.5</b>	30	16	9	75	φ80	M48×1.5	φ <b>5</b> 6	50	23	20	
φ <b>1</b> 00	75	φ80	M48×1.5	<b>φ56</b>	50	23	10	60	φ <b>6</b> 5	M39×1.5	φ <b>4</b> 5	41	20	10	95	φ95	M64×2	φ <b>7</b> 1	65	27	23	
φ125	95	φ95	M64×2	φ71	65	27	10	75	φ80	M48×1.5	φ56	50	23	10	120	φ115	M80×2	φ90	85	30	17	
φ <b>1</b> 40	110	φ105	M72×2	φ80	75	31	10	80	φ <b>8</b> 5	M56×2	φ <b>6</b> 3	55	24	10	140	φ125	M95×2	φ100	-	Drill hole	17	
φ <b>1</b> 50	115	φ110	M76×2	φ <b>8</b> 5	80	33	10	85	φ90	M60×2	<b>φ67</b>	60	30	10	140	φ125	M95×2	φ100	-	Drill hole	15	
φ <b>16</b> 0	120	φ115	M80×2	φ90	85	33	10	95	φ <b>9</b> 5	M64×2	φ71	65	27	10	150	φ140	M100×2	φ112	-	Drill hole	16	
φ180	140	φ125	M95×2	φ100	-	Drill hole	10	110	φ105	M72×2	φ80	75	31	10	-	-	-	-	-	-	_	
φ <b>2</b> 00	150	φ <b>1</b> 40	M100×2	φ112	-	Drill hole	10	120	φ115	M80×2	φ90	85	33	10	-	-	-	-	-	-	-	
φ224	180	φ <b>15</b> 0	M120×2	φ125	-	Drill hole	10	140	φ125	M95×2	φ100	-	Drill hole	10	-	-	-	-	-	-	-	
φ <b>250</b>	195	φ <b>17</b> 0	M130×2	φ140	-	Drill hole	10	150	φ <b>1</b> 40	M100×2	φ112	-	Drill hole	10	-	-	_	-	-	-	-	
Symbol																	V	V		7Y		
Symbol	E		EE	FB	FE	F	P	FR	FY	HL	LX	PJ		R	TF	U	F B•C	V A	B•0	ZY C	A	
Symbol Bore	E	3 1	EE Rc 3/8	FB	FE 62	F	P	FR 40	FY	HL	LX 168	PJ 90	)	R 40	TF 88	U 3 10	F V B•C	V A	B•0	ZY C	A	
Symbol Bore $\phi 32$ $\phi 40$	E □58	B	EE Rc 3/8 Rc 3/8	FB ¢11 ¢11	FE 62 69	F	P 88 88	FR 40 40	FY 13 13	HL 141	LX 168 168	PJ 90	)	R 40 46	TF 88	U 3 10 5 11	F B•C	V A — 35	B•0	ZY C 4 4	A 	
Symbol Bore φ32 φ40 φ50	E 58 06! 07!	3 I 5 I 6 I	EE Rc 3/8 Rc 3/8 Rc 1/2	FB \$\phi11\$ \$\phi14\$	FE 62 69 85	F 3 3 4	P 88 88 82 82 82 82 82 82 82 82 82 82 82	FR 40 40 47	FY 13 13 18	HL 141 141 155	LX 168 168 187	PJ 90 90	) ) 3	R 40 46 58	TF 88 95	U 3 10 5 11 5 12	F V B•C 09 30 18 30 15 30	V A 	B•( 184 184 203	ZY C 4 4 3	A — 189 214	
Symbol           Bore           φ32           φ40           φ50           φ63	E	B I 5 I 6 I	EE Rc 3/8 Rc 3/8 Rc 1/2 Rc 1/2	FB \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	FE 62 69 85 98	F 3 3 4	P 88 88 92 96	FR 40 40 47 51	FY 13 13 13 18 20	HL 141 141 155 163	LX 168 168 187 199	PJ 90 90 98	) ) 3 2	R 40 46 58 65	TF 88 95 115	U 3 10 5 11 5 12 2 16	F V B•C 09 30 18 30 15 30 55 35	V A 	B•0	ZY C 4 3 2 8	A — 189 214 231	
Symbol Bore \$32 \$40 \$50 \$63 \$80	E	B I 5 I 6 I 0 I	EE Rc 3/8 Rc 3/8 Rc 1/2 Rc 1/2 Rc 1/2 Rc 3/4	FB           φ11           φ11           φ14           φ18	FE 62 69 85 98 118	F 3 3 4 4 5	P 88 88 2 6 6	FR 40 40 47 51	FY 13 13 18 20 24	HL 141 141 155 163 184	LX 168 168 187 199 228	PJ 90 90 9102 1102	) ) 3 2	R 40 46 58 65 87	TF 88 95 115 132	U 3 10 5 11 5 12 2 16 5 19	F V B•C 09 30 18 30 15 30 65 35 00 35	V A — 35 41 48 51	B•( 184 203 218 243	ZY 2 4 4 3 2 8 2 3	A — 189 214 231 259	
Symbol Bore \$32 \$40 \$50 \$63 \$80 \$100	E 58 69 90 11 11	3   5   6   10   35	EE Rc 3/8 Rc 3/8 Rc 1/2 Rc 1/2 Rc 3/4 Rc 3/4	FB         φ11         φ11         φ11         φ11         φ14         φ14         φ14         φ18         φ18         φ18         φ122         φ12	FE 62 69 85 98 118 150	F 3 3 4 4 5 5	P 88 88 92 96 96 96	FR 40 40 47 51 62 66	FY 13 13 13 18 20 24 28	HL 141 141 155 163 184 192	LX 168 168 187 199 228 240	PJ 90 90 102 110	)       )       3       2       )       6     1	R 40 46 58 65 87 09	TF 88 95 115 132 155 190	U 3 10 5 11 5 12 2 16 5 19 5 23	F V B•C 09 30 18 30 15 30 55 35 90 35 30 40	V A  35 41 48 51 57	B•0 184 184 203 218 243 260	ZY 4 4 3 2 8 2 3 2 0 2	A — 189 214 231 259 277	
Symbol           Bore           \$42           \$40           \$50           \$63           \$80           \$100           \$125	E	3   1 5   1 6   1 0   1 10   1 35   1 65   1	EE Rc 3/8 Rc 3/8 Rc 1/2 Rc 1/2 Rc 1/2 Rc 3/4 Rc 3/4 Rc 3/4	FB         I           \$\phi11\$         \$\phi           \$\phi14\$         \$\phi           \$\phi14\$         \$\phi           \$\phi14\$         \$\phi           \$\phi14\$         \$\phi           \$\phi14\$         \$\phi           \$\phi18\$         \$\phi           \$\phi26\$         \$\phi26\$	FE 62 69 85 98 118 150 175	FI 33 44 55 66	P 88 88 8 82 12 1 86 1 86 1 86 1 88 1 37	FR 40 40 47 51 62 66 76	FY 13 13 18 20 24 28 33	HL 141 141 155 163 184 192 220	LX 168 168 187 199 228 240 273	PJ 90 90 102 110 110 110	)       )       3       2       )       3       2       )       1       )       1	R 40 46 58 65 87 09 30	TF 88 95 115 132 155 190	U 3 10 5 11 5 12 2 16 5 19 2 23 4 27	F V B•C 09 30 18 30 15 30 55 35 30 35 30 40 72 45	V A  35 41 48 51 57 57	B•0 184 203 213 243 260 298	ZY 2 4 4 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	A 	
Symbol           Bore           \$\phi32\$           \$\phi40\$           \$\phi50\$           \$\phi63\$           \$\phi80\$           \$\phi100\$           \$\phi125\$           \$\phi140\$	E 58 690 90 11 11 11 11 11	3     1       5     1       5     1       6     1       10     1       355     1       655     1	EE Rc 3/8 Rc 3/8 Rc 1/2 Rc 1/2 Rc 3/4 Rc 3/4 Rc 3/4 Rc 1 Rc 1	FB        \$\phi11\$     \$\phi       \$\phi14\$     \$\phi       \$\phi14\$     \$\phi       \$\phi18\$     \$\phi       \$\phi26\$     \$\phi	FE 62 69 85 98 118 150 175 195	F 3 3 4 4 4 5 5 6 6 6 6	P 88 88 88 94 94 94 94 94 94 94 94 94 94 94 94 94	FR 40 40 47 51 62 66 76 80	FY 13 13 18 20 24 28 33 37	HL 141 141 155 163 184 192 220 230	LX 168 168 187 199 228 240 273 287	PJ 90 90 98 102 110 110 130 138	) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )	R 40 46 58 65 87 09 30 45	TF 88 95 115 132 155 190 224 250	U 3 10 5 11 5 12 2 16 5 19 2 23 4 27 0 30	F V B•C 09 30 18 30 15 30 55 35 30 35 30 40 72 45 00 50	V A  35 41 48 51 57 57 57	B•0 184 184 203 211 243 243 260 299 31	ZY C 4 4 3 3 3 2 2 3 3 2 2 3 3 2 2 5 5 6 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5	A 189 214 231 259 277 310 324	
Symbol           Bore           \$432           \$40           \$50           \$63           \$80           \$100           \$125           \$140           \$150	E 58 69 61 11 11 11 11 11 11 11 11 11	3     1       5     1       5     1       5     1       10     1       355     1       355     1       355     1       356     1       356     1	EE Rc 3/8 Rc 3/8 Rc 1/2 Rc 1/2 Rc 1/2 Rc 3/4 Rc 3/4 Rc 3/4 Rc 1 Rc 1 Rc 1	FB         φ           φ11         φ           φ14         φ           φ18         φ           φ22         φ           φ26         φ           φ30         φ	FE 62 69 85 98 118 150 175 195 210	F 3 3 4 4 5 5 5 6 6 6 7 7	P 888 888 888 846 846 846 846 846 846 846	FR 40 40 51 62 66 76 80 82	FY 13 13 18 20 24 28 33 37 39	HL 141 141 155 163 184 192 220 220 230 240	LX 168 168 187 199 228 240 273 287 299	PJ 90 90 102 110 110 130 138 146	) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )	R 40 46 58 65 87 09 30 45 55	TF 888 95 115 132 155 190 224 250 270	U 3 10 5 11 5 12 2 16 5 19 0 23 4 27 0 30 0 32	F V B•C 09 30 18 30 45 30 45 30 55 35 30 35 30 35 30 40 72 45 00 50 20 50	V A 35 41 48 51 57 57 57 57	B•( 184 184 203 211 243 260 293 311 329	ZY           4           4           33           2           88           233           24           77           77           79	A 	
Symbol           Bore           \$\phi32\$           \$\phi40\$           \$\phi50\$           \$\phi63\$           \$\phi80\$           \$\phi100\$           \$\phi125\$           \$\phi140\$           \$\phi150\$           \$\phi160\$	E 58 70 90 11 13 10 11 11 11 11 11 11 11 11 11 11 11 11	3     1       5     1       6     1       10     1       355     1       655     1       835     1       966     1       100     1	EE Rc 3/8 Rc 3/8 Rc 1/2 Rc 1/2 Rc 1/2 Rc 3/4 Rc 3/4 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1	FB         β           φ11         β           φ14         β           φ14         β           φ18         β           φ22         β           φ26         β           φ30         β	FE 62 69 85 98 118 150 175 195 210 225	FI 33 34 44 55 66 66 77 77	P 88 8 88 4 46 6 66 6 66 7 69 1 11 7 4 1	FR 40 40 47 51 62 66 76 80 82 84	FY 13 13 18 20 24 28 33 37 39 41	HL 141 141 155 163 184 192 220 230 240 240	LX 168 168 187 199 228 240 273 287 299 314	PJ 90 98 102 110 130 138 146 156	))) )) )) ) ) ) ) ) ) ) ) ) ) ) ) ) )	R 40 46 58 65 87 09 30 30 45 55 70	TF 888 95 115 132 155 190 224 250 270 285	U 3 100 3 11 5 11 5 12 2 16 5 15 5 23 4 27 3 30 3 32 3 32 3 32	F V B•C 09 30 18 30 15 30 55 35 30 35 30 40 72 45 00 50 20 50 15 55	V A 35 41 48 51 57 57 57 57 57	B•( 184 203 218 243 243 243 243 243 243 343 345 345 345 345 345 345 3	ZY           4           4           33           2           33           2           33           2           33           2           33           2           33           2           33           2           33           2           33           2           33           2           33           2           33           2           33           2           33           2           33           2           34           35           36           37           38           39           39	A 	
Symbol           Bore           \$\phi32\$           \$\phi40\$           \$\phi50\$           \$\phi63\$           \$\phi100\$           \$\phi125\$           \$\phi140\$           \$\phi150\$           \$\phi160\$           \$\phi180\$	E 58 69 11 11 11 11 11 12 22 22	3     1       5     1       5     1       5     1       10     1       355     1       355     1       966     1       100     1       335     1	EE Rc 3/8 Rc 3/8 Rc 1/2 Rc 1/2 Rc 3/4 Rc 3/4 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1	FB     0       \$\phi11\$     0       \$\phi14\$     0       \$\phi14\$     0       \$\phi18\$     0       \$\phi26\$     0       \$\phi26\$     0       \$\phi30\$     0       \$\phi33\$     0	FE 62 69 85 98 118 150 175 210 225 243	F 3 3 4 4 5 5 5 6 6 6 7 7 7 7 7 7 7	P 88 88 88 92 92 92 92 92 92 92 92 92 92 92 92 92	FR 40 40 51 62 66 76 80 82 84	FY 13 13 18 20 24 28 33 37 39 41 46	HL 141 141 155 163 184 192 220 230 230 240 253 275	LX 168 168 187 199 228 240 273 287 299 314 	PJ 90 90 98 102 110 130 138 146 156 172	) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )	R 40 46 58 65 87 09 30 45 55 70 85	TF 888 95 115 132 155 190 224 250 270 285 315	U 3 100 5 111 5 144 2 166 199 2 23 4 27 3 20 3 20	F V B•C 09 30 18 30 15 30 15 30 15 30 30 40 72 45 00 50 20 50 15 55 75 55	V A  35 41 48 51 57 57 57 57 57 57 57 -	B•0 184 203 218 243 260 298 317 329 349 349 370	ZY           C         -           4         -           33         2           88         2           33         2           88         2           99         3           66         -	A — 189 214 231 259 277 310 324 336 351 _	
Symbol           Bore           \$42           \$40           \$50           \$63           \$80           \$100           \$125           \$140           \$150           \$140           \$150           \$140           \$150           \$200	E 58 69 11 11 11 11 11 11 11 22 22 22 22 22	3     1       5     1       5     1       6     1       10     1       355     1       355     1       96     1       10     1       355     1       96     1       355     1       355     1       96     1       355     1       355     1	EE Rc 3/8 Rc 3/8 Rc 1/2 Rc 1/2 Rc 3/4 Rc 3/4 Rc 3/4 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1/2 Rc 1/2 Rc 3/4 Rc 3/4 Rc 1/2 Rc 3/4 Rc 3/4 Rc 1/2 Rc 3/4 Rc 3/4 Rc 1/2 Rc 3/4 Rc 1/2 Rc 3/4 Rc 1/2 Rc 1/2 Rc 1/2 Rc 3/4 Rc 1/2 Rc	FB         φ           φ11         φ           φ14         φ           φ14         φ           φ18         φ           φ22         φ           φ26         φ           φ33         φ           φ33         φ	FE 62 69 85 98 118 150 175 195 210 225 243 272	Fl 33 34 44 55 66 66 77 77 77 88	P 38 48 42 46 46 57 59 55 55 55 55 55 55 55 55 55	FR 40 40 51 62 66 76 80 82 84 -	FY 13 13 18 20 24 28 33 37 39 41 46 51	HL 141 141 155 163 184 192 220 230 230 240 253 275 301	LX 168 168 187 199 228 240 273 287 299 314 	PJ 90 90 102 110 130 138 146 156 172 184	)         )           )         )           33         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         )           )         ) <	R 40 58 65 87 09 30 45 55 70 85 85	TF 88 95 115 132 155 190 224 250 270 285 315 355	U 3 100 3 111 14 2 16 3 19 3 23 4 27 3 34 3 34 3 37 3 42 3 44 3 4	F V B•C 09 30 18 30 15 30 55 35 30 35 30 40 72 45 30 50 72 55 55 55 25 55	V A 35 41 48 51 57 57 57 57 57 57 - -	B•0 184 203 211 243 260 290 311 329 349 370 40	ZY 2 4 4 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	A 	
Symbol           Bore           \$\phi32           \$\phi40           \$\phi50           \$\phi63           \$\phi80           \$\phi100           \$\phi125           \$\phi140           \$\phi150           \$\phi160           \$\phi180           \$\phi224	E 58 69 11 13 10 11 12 22 22 22 22 22	3     1       5     1       5     1       6     1       10     1       355     1       355     1       356     1       357     1       356     1       357     1       356     1       357     1       357     1       357     1       357     1       357     1       357     1       357     1       357     1       357     1       357     1       357     1       357     1	EE Rc 3/8 Rc 3/8 Rc 1/2 Rc 1/2 Rc 3/4 Rc 3/4 Rc 3/4 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 Rc 11/4 Rc 1 ¹ /2 Rc 1 ¹ /2 R	FB     I       \$\phi11\$     \$\phi14\$       \$\phi14\$     \$\phi14\$       \$\phi24\$     \$\phi24\$	FE 62 69 85 98 118 150 175 210 225 243 272 310	Fl 33 34 44 55 66 66 66 77 77 77 88 88	P  88  88  88  42  66  66  66  66  67  77  8  69  71  74  75  85  9  9  9  9  9  9  9  9  9  9  9  9  9	FR 40 40 51 62 66 76 80 82 84 - -	FY 13 13 18 20 24 28 33 37 39 41 46 51 58	HL 141 141 155 163 184 192 220 230 230 240 253 275 301 305	LX 168 187 199 228 240 273 287 299 314 	PJ 90 90 102 110 130 138 146 172 184 184	)         )           )         )           33         )           22         )           )         )           1         )           33         1           34         1           35         1           36         1           37         1           38         1           39         1           30         1           33         1           36         1           37         1           38         1           39         1           30         1           31         1           32         1           34         2	R 40 58 65 87 09 30 45 55 70 85 70 85 206	TF 88 95 115 132 155 190 224 250 270 285 315 355 395	U 3 100 3 11 3 14 4 16 5 15 233 277 300 323 34 37 37 37 37 37 37 37 37 37 37	V           B•C           09         30           18         30           15         30           15         30           15         30           15         30           15         30           15         35           20         50           20         50           15         55           15         55           15         55           25         55           25         55	V A  35 41 48 51 57 57 57 57 57 57 - - - -	B•0 184 203 214 243 243 243 243 293 311 329 349 370 40 40	ZY           2           4           4           33           2           33           2           33           2           33           2           33           2           33           2           33           2           33           2           33           2           33           2           39           3           3	A 	

• Allowance of B is h8, allowance of MM is f8.

Symbol	Bore	ф <b>3</b> 2	φ <b>4</b> 0	φ50	ф <b>6</b> 3	φ80	φ100	φ125	φ140	φ150	φ160	φ180	ф200	φ224	φ <b>2</b> 50
	Rod B	40	50	63	71	80	100	125	125	140	140	160	180	180	200
WW	Rod C	_	50	50	63	71	80	100	125	125	125	125	140	160	180
	Rod A	-	63	71	80	100	125	140	160	160	180	-	-	_	-
	Rod B	45	45	45	55	55	55	65	65	65	65	65	65	80	80
Х	Rod C	_	45	45	55	55	55	65	65	65	65	65	65	80	80
	Rod A	-	45	55	55	55	65	65	65	65	65	-	-	-	-

Unit: mm

CAD/DATA is 70-140H-8/TH8 Bore B available.





φ32 - φ100 :Max. 7 φ125 - φ150 :Max. 11 φ160 - φ250 :Max. 13

RTFUF







Double rod type (\phi32 - \phi160) For both ends loaded type



• The switch set ( $\phi$ 32 -  $\phi$ 140) is also within the fabrication range.

## With boots



70-140H-8/TH8 Bore K

Standard	Semi-standard

	Standard	Semi-si	andard
Material	Nylon tarpaulin	Chloroprene	Conex
Resistible temperature	80°C	130°C	200°C

Notes) • Remember that the resistible temperatures shown in the table above are for the boots, not for the cylinder.

- Conex is the registered trademark of Teijin Ltd.
- If decimals are included into the calculation results, raise them to the next whole number.
- The boots have been mounted at our factory prior to delivery.

8-FB

 $\oplus$ 

D

 $\oplus$ 

type).

Ð

-0

-0

A

(C)

R

TF

UF

Ð

Ð

Œ

B

• For the dimensions other than in the diagram above,

• For the mounting of switches, refer to the dimensional

"Switch mounting dimensions" are identical.

drawings of "Switch set". All the contents other than

refer to the specification of the SD type (standard

## **Dimensional table**

Symbol			Roc		Rod C											
Bore	А	В	KK	MN	Л	S	SL	VD	A	В		КК	MM	S	SL	VD
φ <b>3</b> 2	25	ф <b>3</b> 4	M16×1.5	φ18		14	10	10	_	_		_	-	_	-	_
φ <b>4</b> 0	30	φ40	M20×1.5	φ22	.4	19	11	10	25	φ <b>3</b> 6	M	16×1.5	φ18	14	10	10
φ50	35	φ46	M24×1.5	φ <b>2</b> 8		24	14	10	30	φ <b>4</b> 0	M	20×1.5	φ22.4	19	11	10
φ <b>6</b> 3	45	φ55	M30×1.5	φ <b>3</b> 5	5.5 30		16	10	35	φ <b>4</b> 6	M	24×1.5	φ <b>2</b> 8	24	14	10
φ <b>80</b>	60	φ65	M39×1.5	φ45	5 41		20	10	45	φ <b>5</b> 5	M	30×1.5	φ <b>35</b> .5	5 30	16	9
φ100	75	φ80	M48×1.5 φ5			50	23	10	60	φ <b>6</b> 5	M	39×1.5	φ <b>4</b> 5	41	20	10
φ125	95	φ95	M64×2	φ71		65	27	10	75	φ80	M	48×1.5	φ56	50	23	10
φ <b>1</b> 40	110	φ105	M72×2	v172×2 ∲80		75	31	10	80	φ <b>8</b> 5	M	56×2	φ <b>6</b> 3	55	24	10
φ <b>15</b> 0	115	φ110	M76×2	И76×2 ф85		30	33	10	85	φ90	M	60×2	φ <b>6</b> 7	60	30	10
φ <b>16</b> 0	120	φ115	M80×2	φ90		35	33	10	95	φ <b>9</b> 5	M	64×2	φ <b>7</b> 1	65	27	10
φ180	140	φ125	M95×2	W95×2 φ10		-	Drill hole	10	110	φ105	5 M	72×2	φ80	75	31	10
φ200	150	φ140	M100×2	φ11	2	-	Drill hole	10	120	φ115	i Ma	80×2	φ90	85	33	10
φ224	180	φ150	M120×2	φ12	5	-	Drill hole	10	140	φ125	5 M	95×2	φ100	-	Drill hole	10
φ <b>250</b>	195	φ170	M130×2	φ <b>1</b> 4	0	-	Drill hole	10	150	φ14C	) M	100×2	¢112		Drill hole	10
Symbol																
Dans	BB	E	EE		F	FI	в	нь	LL	LZ	PJ	R	TF	UF	W	ΥP
Δore	11	□58	Rc 3/8		11	<u></u>	1	141	130	166	90	40	88	109	30	27
φ <b>5</b> 2	11		Rc 3/8		11	φ1 	1	141	130	166	90	46	95	118	30	27
φ-10 φ-50	11		Rc 1/2		13	φ. 	4	155	142	182	98	58	115	145	30	29
φ63	13	□90	Rc 1/2		15	φ. 	8	163	148	194	102	65	132	165	35	31
φ80	16	□110	Rc 3/4		18	φ1	8	184	166	222	110	87	155	190	35	38
φ <b>1</b> 00	18	 □135	Rc 3/4		20	φ2	22	192	172	232	116	109	190	230	40	38
φ125	21	 □165	Rc 1		24	¢2	26	220	196	264	130	130	224	272	45	43
φ <b>1</b> 40	22	□185	Rc 1		26	φ2	26	230	204	276	138	145	250	300	50	43
φ <b>15</b> 0	25	□196	Rc 1		28	φ3	30	240	212	288	146	155	270	320	50	43
φ <b>16</b> 0	25	□210	Rc 1		31	¢3	33 2	253	222	304	156	170	285	345	55	43
φ180	27	□235	Rc 1 ¹ /4		33	φ3	33	275	242	-	172	185	315	375	55	42
φ <b>2</b> 00	29	□262	Rc 1 ¹ /2		37	φ3	36 3	301	264	-	184	206	355	425	55	48
φ <b>2</b> 24	34	□292	Rc 1 ¹ /2		41	φ4	2	305	264	_	184	230	395	475	60	48
				Rc 1 1/2 Rc 2		46 ¢45										

• Allowance of B is h8, allowance of MM is f8.

Symbol	Bore	φ <b>3</b> 2	φ <b>4</b> 0	φ50	<b>ф6</b> 3	φ <b>8</b> 0	φ100	φ125	φ140	φ150	φ160	φ180	φ200	φ224	φ <b>2</b> 50
10/10/	Rod B	40	50	63	71	80	100	125	125	140	140	160	180	180	200
~~~	Rod C	-	50	50	63	71	80	100	125	125	125	125	140	160	180
v	Rod B	45	45	45	55	55	55	65	65	65	65	65	65	80	80
~	Rod C	-	45	45	55	55	55	65	65	65	65	65	65	80	80

Unit: mm

- For the dimensions other than in the diagram above, refer to the specification of the SD type (standard type).
- For the mounting of switches, refer to the dimensional drawings of "Switch set". All the contents other than "Switch mounting dimensions" are identical.

Double rod type (ϕ 32 - ϕ 160/rod B, C) For both ends loaded type

• The switch set (ϕ 32 - ϕ 140) is also within the fabrication range.

With boots

	Standard	Semi-st	andard				
Material	Nylon tarpaulin	Chloroprene	Conex				
Resistible temperature	80°C	130°C	200°C				

Notes) • Remember that the resistible temperatures shown in the table above are for the boots, not for the cylinder.

- Conex is the registered trademark of Teijin Ltd.
- If decimals are included into the calculation results, raise them to the next whole number.
- The boots have been mounted at our factory prior to delivery.

70/140H-8

Dimensional table

Symbol	ol Rod B										Rod C									
Bore	А	В	КК		MM		S	SL	VD	A	В		KK	MM		S	SL	VD		
φ 3 2	25	φ 3 4	M16×1.	5	φ18	1	4	10	10	-	-		-	-		-	_	-		
φ40	30	φ40	M20×1.	5	φ22.4	1	9	11	10	25	φ 36	M	16×1.5	φ18		14	10	10		
φ50	35	φ 4 6	M24×1.	5	φ 2 8	2	4	14	10	30	φ 4 0	М	20×1.5	φ22.4	4	19	11	10		
φ 6 3	45	φ55	M30×1.	5	φ 35 .5	3	0	16	10	35	φ 4 6	M	24×1.5	φ28		24	14	10		
φ80	60	φ65	M39×1.	5	φ 4 5	45 41		20	10	45	φ 5 5	М	30×1.5	φ 35 .5	5	30	16	9		
φ100	75	φ80	M48×1.	5	φ 5 6	5	0	23	10	60	φ 6 5	M	39×1.5	φ 4 5		41	20	10		
φ125	95	φ95	M64×2		φ71	6	5	27	10	75	φ80	М	48×1.5	φ56		50	23	10		
φ 1 40	110	φ 105	M72×2		φ80	7	5	31	10	80	φ85	M	56×2	φ 6 3		55	24	10		
φ 15 0	115	φ 110	M76×2	M76×2		8	0	33	10	85	φ90	М	60×2	φ 6 7		60	30	10		
φ 16 0	120	φ115	M80×2	M80×2		8	5	33	10	95	φ95	M	64×2	φ 7 1		65	27	10		
φ180	140	φ125	M95×2	M95×2		-	-	Drill hole	10	110	φ105	i M	72×2	φ80		75	31	10		
φ 200	150	φ 1 40	M100×2	M100×2		-	-	Drill hole	10	120	φ115	i M	80×2	φ90		85	33	10		
φ224	180	φ 15 0	M120×2		φ125	-	-	Drill hole	10	140	φ125	i M	95×2	φ100		-	Drill hole	10		
φ 250	195	φ 17 0	M130×2		φ 140	-	-	Drill hole	10	150	φ 14 0) M	100×2	φ112		-	Drill hole	10		
Symbol																				
Bara	Е		EE	F	F	В	FF		HL	LZ	PJ	R	TF	UF	V	v	YP	ZH		
bore d32	□58	R	1c 3/8	11		11	3	8	141	166	90	40	88	109	3	0	27	182		
φ02 φ40	□65	R	10 3/8	11	ф (11	3	8	141	166	90	46	95	118	3	0	27	182		
φ.0 φ50	□76	R	c 1/2	13	н ф	14	4	2	155	182	98	58	115	145	3	0	29	198		
φ 6 3	□90	R	c 1/2	15	, ф	18	4	6	163	194	102	65	132	165	3	5	31	213		
φ80	□110	R	c 3/4	18	, т ф	18	5	6	184	222	110	87	155	190	3	5	38	237		
φ 1 00	□135	R	c 3/4	20	0 0	22	5	8	192	232	116	109	190	230	4	0	38	252		
φ125	 □165	R	c 1	24	φ	26	6	7	220	264	130	130	224	272	4	5	43	289		
φ 1 40	□185	R	c 1	26	φ 3	26	6	9	230	276	138	145	250	300	5	0	43	306		
φ 15 0	□196	R	c 1	28	6 I	30	7	1	240	288	146	155	270	320	5	0	43	318		
φ 160	□210	R	c 1	31	φ	33	74	4	253	304	156	170	285	345	5	5	43	339		
φ 1 80	□235	R	c 1 ¹ /4	33	φ	33	7	5	275	-	172	185	315	375	5	5	42	363		
φ 200	□262	R	c 1 ¹ /2	37	φ	36	8	5	301	-	184	206	355	425	5	5	48	393		
φ224	□292	R	c 1 ¹ /2	41	φ	42	8	9	305	_	184	230	395	475	6	0	48	406		
φ250	□325	R	c 2	46	φ	45	10	6	346	-	200	250	425	515	6	5	60	457		

• Allowance of B is h8, allowance of MM is f8.

Symbol	Bore	φ 3 2	φ 4 0	φ50	ф 6 3	φ80	φ100	φ125	φ 1 40	φ150	φ160	φ180	φ200	φ224	φ 2 50
10/10/	Rod B	40	50	63	71	80	100	125	125	140	140	160	180	180	200
~~~	Rod C	-	50	50	63	71	80	100	125	125	125	125	140	160	180
~	Rod B	45	45	45	55	55	55	65	65	65	65	65	65	80	80
~	Rod C	-	45	45	55	55	55	65	65	65	65	65	65	80	80
### 7/14 MPa double acting hydraulic cylinder Double acting single rod/double rod



- For the dimensions other than in the diagram above, refer to the specification of the SD type (standard type).
- For the mounting of switches, refer to the dimensional drawings of "Switch set". All the contents other than "Switch mounting dimensions" are identical.
- For the type with a bore of \$\$\phi180\$ or more, the CA accessory is equipped with the gray cast iron bush.
- The CA accessory, which is attached to the type with a bore of  $\phi$ 180 or more, is made of structural rolled steel (welding type), and is equipped with the gray cast iron bush.

#### With boots



	Standard	Semi-s	tandard				
Material	Nylon tarpaulin	Chloroprene	Conex				
Resistible temperature	80°C	130°C	200°C				
Notes) • Remember boots, not • Conex is t • If decimals number. • The boots	r that the resistible temp for the cylinder. he registered trademark s are included into the ca have been mounted at	eratures shown in the of Teijin Ltd. Iculation results, raise our factory prior to del	table above are for the them to the next whole ivery.				
Rod A Nylon tarpaulin Chloroprene	(	1/3.5 Stro 0 1/4 Stro 25 1/5 Stro	$ \begin{pmatrix} ke + X \\ ke + X \\ ke + X \end{pmatrix} $				
Conex	(	1/2.5 Stro 0 1/3 Stro 1/3.5 Stro 60 1/4 Stro	ke + X ke + X ke + X ke + X				

70-140H-8/TH8 Bore K

#### **Dimensional table**

Symbol			Re	od B				Rod C							Rod A						
Bore	A	В	КК	MM	S	SL	VD	Α	В	KK	MM	S	SL	VD	Α	В	КК	MM	S	SL	VD
φ <b>3</b> 2	25	¢34	M16×1.5	φ18	14	10	10	-	-	-	-	-	_	-	-	-	-	-	-	-	-
φ40	30	ф40	M20×1.5	¢22.4	19	11	10	25	ф <b>3</b> 6	M16×1.5	φ18	14	10	10	35	φ <b>4</b> 3	M24×1.5	φ <b>2</b> 8	24	14	17
φ50	35	ф46	M24×1.5	φ <b>2</b> 8	24	14	10	30	φ40	M20×1.5	φ22.4	19	11	10	45	φ50	M30×1.5	φ <b>35</b> .5	30	16	17
φ <b>6</b> 3	45	φ <b>5</b> 5	M30×1.5	¢35.5	30	16	10	35	φ46	M24×1.5	φ <b>2</b> 8	24	14	10	60	φ65	M39×1.5	φ <b>4</b> 5	41	20	19
φ80	60	ф <b>6</b> 5	M39×1.5	φ <b>4</b> 5	41	20	10	45	φ55	M30×1.5	φ <b>35</b> .5	30	16	9	75	φ80	M48×1.5	φ56	50	23	20
φ <b>1</b> 00	75	φ <b>8</b> 0	M48×1.5	φ <b>5</b> 6	50	23	10	60	φ <b>6</b> 5	M39×1.5	φ45	41	20	10	95	φ95	M64×2	φ <b>7</b> 1	65	27	23
φ125	95	φ <b>9</b> 5	M64×2	φ <b>7</b> 1	65	27	10	75	φ80	M48×1.5	<b>φ56</b>	50	23	10	120	φ115	M80×2	φ90	85	30	17
φ <b>1</b> 40	110	φ105	M72×2	φ80	75	31	10	80	φ85	M56×2	ф <b>6</b> 3	55	24	10	140	φ125	M95×2	φ100	-	Drill hole	17
φ <b>15</b> 0	115	φ110	M76×2	φ <b>8</b> 5	80	33	10	85	φ90	M60×2	φ <b>6</b> 7	60	30	10	140	φ125	M95×2	φ100	-	Drill hole	15
φ <b>16</b> 0	120	φ115	M80×2	φ90	85	33	10	95	φ95	M64×2	φ71	65	27	10	150	φ140	M100×2	φ112	-	Drill hole	16
φ <b>1</b> 80	140	φ125	M95×2	φ100	-	Drill hole	10	110	φ105	M72×2	φ <b>8</b> 0	75	31	10	-	-	-	-	-	-	-
φ <b>2</b> 00	150	φ <b>1</b> 40	M100×2	φ112	-	Drill hole	10	120	φ115	M80×2	φ90	85	33	10	-	-	-	-	-	-	-
φ <b>22</b> 4	180	φ <b>1</b> 50	M120×2	φ125	-	Drill hole	10	140	φ125	M95×2	φ100	-	Drill hole	10	-	-	-	-	-	-	-
φ <b>2</b> 50	195	φ <b>1</b> 70	M130×2	φ <b>1</b> 40	-	Drill hole	10	150	φ140	M100×2	φ112	-	Drill hole	10	-	-	-	-	-	-	-
Symbol																\٨/	X	П		70	
Bara	С	D	E	EE		ΕV	/	FL	FP	HL	L	MF	2	PJ	B•C	2	B•C	Δ	B•(	20	Δ
<u>воге</u> <u> </u> <u> /u>	ტ16⊦	19	□58	Rc 3/8		25	0.1	38	38	3 141	R20	R16	;	90	30	-	209	_	225	-	_
φ <b>4</b> 0	¢16⊦	19	□65	Rc 3/8		25	0.4	38	38	3 141	R20	R16	;	90	30	3	5 209	214	225	2	30
φ50	¢20⊦	19	□76	Rc 1/2		31.5	0.4 0.1	45	42	2 155	R25	R20	)	98	30	4	1 230	241	250	2	61
φ <b>6</b> 3	¢31.	5H9	 □90	Rc 1/2		40	0.1	63	46	6 163	R46	R31	.5	102	35	4	3 261	274	292	5 3	05.5
φ80	φ31 !	5H9		Rc 3/4		40	0.1 0.4	72	56	6 184	R52	R31	.5	110	35	5	1 291	307	322	.5 3	38.5
	1401.0			110 0/ 4			- · · ·													3	73
φ100	¢40⊦	19		Rc 3/4		50	0.1	84	58	3 192	R62	R40	)   .	116	40	5	7 316	333	356	13	
φ100 φ125	φ40F φ50F	19 19	□135 □165	Rc 3/4 Rc 1		50 63	0.1 0.4 0.1 0.4	84 100	58	3 192 7 220	R62 R73	R40 R50	) ·	116 130	40 45	5	7 316 7 365	333 377	356 415	4	27
φ100 φ125 φ140	φ40F φ50F φ63F	19 19 19	□ 135 □ 165 □ 185	Rc 3/4 Rc 1 Rc 1		50 63 80	0.1 0.4 0.1 0.4 0.4 0.1 0.6	84 100 120	58 67 69	3 192 7 220 9 230	R62 R73 R91	R40 R50 R63	) ·	116 130 138	40 45 50	5 5 5	7 316 7 365 7 400	333 377 407	356 415 463	4	27 70
<ul><li>φ100</li><li>φ125</li><li>φ140</li><li>φ150</li></ul>	<ul> <li>φ40F</li> <li>φ50F</li> <li>φ63F</li> <li>φ63F</li> </ul>	19 19 19 19	□ 135 □ 165 □ 185 □ 196	Rc 3/4 Rc 1 Rc 1 Rc 1 Rc 1		50 63 80 80	0.1 0.4 0.1 0.4 0.1 0.6 0.1 0.6	84 100 120 122	58 67 69 71	<ul> <li>3 192</li> <li>7 220</li> <li>9 230</li> <li>1 240</li> </ul>	R62 R73 R91 R91	R40 R50 R63 R63	) · ) · ; ·	116 130 138 146	40 45 50 50	5 5 5 5	7     316       7     365       7     400       7     412	<ul><li>333</li><li>377</li><li>407</li><li>419</li></ul>	356 415 463 475	4 4 4 4	27 70 82
<ul> <li>φ100</li> <li>φ125</li> <li>φ140</li> <li>φ150</li> <li>φ160</li> </ul>	<ul> <li>φ40F</li> <li>φ50F</li> <li>φ63F</li> <li>φ63F</li> <li>φ71F</li> </ul>	19 19 19 19 19	□ 1135 □ 1135 □ 1165 □ 1185 □ 1196 □ 210	Rc 3/4 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1		50	0.1 0.4 0.1 0.4 0.1 0.6 0.1 0.6 0.1 0.6	84 100 120 122 137	58 67 69 71 74	<ul> <li>3 192</li> <li>7 220</li> <li>9 230</li> <li>1 240</li> <li>4 253</li> </ul>	R62 R73 R91 R91 R103	R40 R50 R63 R63 R71	) · ) · ; · ; ·	116 130 138 146 156	40 45 50 50 55	5 5 5 5 5 5	7     316       7     365       7     400       7     412       7     445	<ul><li>333</li><li>377</li><li>407</li><li>419</li><li>447</li></ul>	356 415 463 475 516	4 4 4 5	27 70 82 18
<ul> <li>φ100</li> <li>φ125</li> <li>φ140</li> <li>φ150</li> <li>φ160</li> <li>φ180</li> </ul>	<ul> <li>φ40F</li> <li>φ50F</li> <li>φ63F</li> <li>φ63F</li> <li>φ71F</li> <li>φ80F</li> </ul>	19 19 19 19 19 19	□ 1135 □ 1135 □ 1165 □ 1185 □ 1196 □ 210 □ 2235	Rc 3/4 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 ¹ /4		50 - 63 - 80 - 80 - 80 -	0.1 0.4 0.1 0.4 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6	84 100 120 122 137 150	558 677 699 71 74 75	3     192       7     220       9     230       1     240       4     253       5     275	R62 R73 R91 R91 R103 R100	R40 R50 R63 R63 R71 R80	) · · · · · · · · · · · · · · · · · · ·	116 130 138 146 156 172	40 45 50 50 55 55	5 5 5 5 5 5	7     316       7     365       7     400       7     412       7     445       480	333 377 407 419 447 	356 415 463 475 516 560	4 4 4 4 5	27 70 82 18
<ul> <li>φ100</li> <li>φ125</li> <li>φ140</li> <li>φ150</li> <li>φ160</li> <li>φ180</li> <li>φ200</li> </ul>	<ul> <li>φ40F</li> <li>φ50F</li> <li>φ63F</li> <li>φ63F</li> <li>φ71F</li> <li>φ80F</li> <li>φ90F</li> </ul>	19 19 19 19 19 19 19	□ 1135 □ 1165 □ 1165 □ 1185 □ 1196 □ 210 □ 235 □ 262	Rc 3/4 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 ¹ /4 Rc 1 ¹ /2		50 - 63 - 80 - 80 - 100 - 125 -	0.1 0.4 0.1 0.4 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6	84 100 120 122 137 150 170	58 67 69 71 72 75 85	3     192       7     220       9     230       1     240       4     253       5     275       5     301	R62 R73 R91 R91 R103 R100 R115	R40 R50 R63 R63 R71 R80 R90	) · · · · · · · · · · · · · · · · · · ·	116 130 138 146 156 172 184	40 45 50 55 55 55	5 5 5 5 5 5 -	7     316       7     365       7     400       7     412       7     445       480       526	333 377 407 419 447 	356 415 463 475 516 560 616	4 4 4 4 5	27 70 82 18 -
<ul> <li>\$\phi100\$</li> <li>\$\phi125\$</li> <li>\$\phi140\$</li> <li>\$\phi150\$</li> <li>\$\phi160\$</li> <li>\$\phi180\$</li> <li>\$\phi200\$</li> <li>\$\phi224\$</li> </ul>	<ul> <li>φ40F</li> <li>φ50F</li> <li>φ63F</li> <li>φ63F</li> <li>φ71F</li> <li>φ80F</li> <li>φ90F</li> <li>φ100</li> </ul>	19 1 19 1 19 1 19 1 19 1 19 1 19 1	□ 1135 □ 1135 □ 1165 □ 1185 □ 1196 □ 210 □ 2235 □ 262 □ 292	Rc 3/4 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 Rc 1 ¹ /4 Rc 1 ¹ /2 Rc 1 ¹ /2		50 - 63 - 80 - 80 - 100 - 125 - 125 -	0.1 0.4 0.1 0.4 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6	84 100 120 122 137 150 170 185	58 67 69 71 72 75 85 85	3     192       7     220       9     230       1     240       4     253       5     275       5     301       9     305	R62 R73 R91 R91 R103 R100 R115 R125	R40 R50 R63 R63 R71 R80 R90 R10	) · · · · · · · · · · · · · · · · · · ·	116 130 138 146 156 172 184	40 45 50 55 55 55 60	5 5 5 5 5 -	7     316       7     365       7     400       7     412       7     445       480       526       550	333 377 407 419 447 	356 415 463 475 516 560 616 650	4 4 4 5	27 70 82 18 - -

• Allowance of B is h8, allowance of MM is f8.

#### With boots

Symbol	Bore	ф <b>3</b> 2	φ <b>4</b> 0	φ50	φ63	φ80	φ100	φ125	φ140	φ150	φ160	φ180	ф200	φ224	ф <b>2</b> 50
	Rod B	40	50	63	71	80	100	125	125	140	140	160	180	180	200
WW	Rod C	_	50	50	63	71	80	100	125	125	125	125	140	160	180
	Rod A	-	63	71	80	100	125	140	160	160	180	-	-	-	-
	Rod B	45	45	45	55	55	55	65	65	65	65	65	65	80	80
Х	Rod C	_	45	45	55	55	55	65	65	65	65	65	65	80	80
	Rod A	-	45	55	55	55	65	65	65	65	65	-	-	-	-



- The grease is not sealed at the shipment.
- Inner diameter and installation width of bearing are conformed to JIS B8367-2 MP5 type regulation. (Same standard with 160H-1 series.)
- For the dimensions other than in the diagram above, refer to the specification of the SD type (standard type).
- For the mounting of switches, refer to the dimensional drawings of "Switch set". All the contents other than "Switch mounting dimensions" are identical.

#### With boots





	Standard	Semi-st	andard
Material	Nylon tarpaulin	Chloroprene	Conex
Resistible temperature	80°C	130°C	200°C

Notes) • Remember that the resistible temperatures shown in the table above are for the boots, not for the cylinder.

Conex is the registered trademark of Teijin Ltd.

 If decimals are included into the calculation results, raise them to the next whole number.

• The boots have been mounted at our factory prior to delivery.

Rod A	( φ40	1/ 3.5	Stroke + X	
Nylon tarpaulin	φ50 - φ80	1/4	Stroke + X	
Chloroprene	φ100 • φ125	1/5	Stroke + X	
Conex	$\left( \begin{array}{c} \phi 40 \\ \phi 50 \\ \phi 100 \\ \phi 125 \end{array} \right \phi 80$	1/2.5 1/3 1/3.5 1/4	Stroke + X Stroke + X Stroke + X Stroke + X	)

#### **Dimensional table**

Symbol				Roo	d B				Rod C							Rod A								
Bore	А	В	ŀ	≺K	MM	S	SL	VD	Α	В	KK	1	ΜN	S	SL	VD	А	В	КК	MM	S	SL	VD	
<i>φ</i> 40	30	<i>φ</i> 40	M20	0×1.5	<i>ф</i> 22.4	19	11	10	25	<i>ø</i> 36	M16×1.	5 φ	18	14	10	10	35	<i>ф</i> 43	M24×1.5	<i>ø</i> 28	24	14	17	
$\phi 50$	35	<i></i> \$46	M24	4×1.5	<i>ф</i> 28	24	14	10	30	<i>φ</i> 40	M20×1.	5 φ	22.4	19	11	10	45	<i>φ</i> 50	M30×1.5	<i>\$</i> 35.5	30	16	17	
<i>\</i> \$63	45	<i>ø</i> 55	M30	0×1.5	<i>\$</i> 35.5	30	16	10	35	<i></i> \$46	M24×1.	5 φ	28	24	14	10	60	<i>ф</i> 65	M39×1.5	<i>φ</i> 45	41	20	19	
<i>\phi</i> 80	60	<i></i> \$65	M3	9×1.5	<i>φ</i> 45	41	20	10	45	<i>ø</i> 55	M30×1.	5 φ	35.5	30	16	9	75	<i>ø</i> 80	M48×1.5	<i>ø</i> 56	50	23	20	
<i>ф</i> 100	75	<i>ø</i> 80	M48	8×1.5	<i></i> \$56	50	23	10	60	<i>ϕ</i> 65	M39×1.	5 φ	45	41	20	10	95	<i></i> 95	M64×2	<i>φ</i> 71	65	27	23	
<i>ф</i> 125	95	<i></i> ø95	M64	4×2	<i>φ</i> 71	65	27	10	75	<i>ø</i> 80	M48×1.	5 φ	56	50	23	10	120	<i>ф</i> 115	M80×2	<i>φ</i> 90	85	33	17	
Symbol														٨/		 D		70		arease	nipr	ole		
Bore	CE		E	EE	EN	EM	FL	FP	HL	L	MR	PJ	B•C	A	B•C	; A	B•		4 (	Code		EL	HG	
<i>φ</i> 40	20_0	.012 🗆	]65	Rc3/8	16_0.1	2 13	44	4 38	141	25	R27.5	90	30	35	215	5 220	242	2.5 24	7.5 JIS A t	type MT	6×1	11	11	
<i>φ</i> 50	25_0	.012	]76	Rc1/2	20_0.1	2 17	53	3 42	155	5 31	R32.5	98	30	41	238	3 249	270	).5 28	1.5 JIS A t	type MT	6×1	14	11	
<i>\</i> 63	<b>30</b> _0	.012	]90	Rc1/2	22_0.1	2 19	64	4 46	163	38	R40	102	35	48	262	2 275	302	2 31	5 JIS A	type Ro	:1/8	15	15	
<i>\phi</i> 80	40_0	.012	110	Rc3/4	28_0_1	2 23	81	1 56	184	48	R50	110	35	51	300	316	350	36	6 JIS A	type Ro	:1/8	20	15	
<i>φ</i> 100	50_0	.012 🗆	135	Rc3/4	35_0.1	2 30	96	58	192	2 58	R60	116	40	57	328	345	388	3 40	5 JIS A	type Ro	:1/8	24	15	
<i>ф</i> 125	60_0	.015 🗆	165	Rc1	44_0.1	38	117	67	220	72	R75	130	45	57	382	2 394	457	46	9 JIS A	type Ro	:1/8	28	15	

• Allowance of B is h8, allowance of MM is f8.

#### With boots

Symbol	Bore	<i>ф</i> 40	<i>φ</i> 50	<i>ф</i> 63	<i></i> \$80	<i>ф</i> 100	<i>ф</i> 125
	Rod B	50	63	71	80	100	125
WW	Rod C	50	50	63	71	80	100
	Rod A	63	71	80	100	125	140
	Rod B	45	45	55	55	55	65
Х	Rod C	45	45	55	55	55	65
	Rod A	45	55	55	55	65	65

70/140H-8

### 7/14 MPa double acting hydraulic cylinder Double acting single rod/double rod

Unit: mm



- For the dimensions other than in the diagram above, refer to the specification of the SD type (standard type).
- For the mounting of switches, refer to the dimensional drawings of "Switch set". All the contents other than "Switch mounting dimensions" are identical.
- $\bullet\,$  Material of CB accessory for type with a bore of  $\phi32$  to  $\phi160:$  nodular graphite cast iron
- $\bullet\,$  Material of CB accessory for type with a bore of  $\phi180$  or more: structural rolled steel

#### With boots



	Standard	Semi-st	andard				
Material	Nylon tarpaulin	Chloroprene	Conex				
Resistible temperature	80°C	130°C	200°C				
<ul> <li>boots, not</li> <li>Conex is t</li> <li>If decimals number.</li> <li>The boots</li> </ul>	for the cylinder. he registered trademark are included into the ca have been mounted at	x of Teijin Ltd. alculation results, raise our factory prior to del	them to the next whole				
Rod A Nylon tarpaulin Chloroprene	(	1/3.5 Strol 0 1/4 Strol 25 1/5 Strol	(e + X) (e + X) (e + X)				
Conex	(	1/2.5 Strol 0 1/3 Strol 1/3.5 Strol	(e + X (e + X (e + X				

1/4

Stroke + X

¢125

70-140H-8/TH8 Bore K

#### **Dimensional table**

Symbol			Ro	d B				Rod C						Rod A										
Bore	А	В	KK	MM	s	SL	VD	Α	В	к	ΪK	MM	S	SL	VD	A	В		KK	M	и	3 (	SL	VD
φ <b>3</b> 2	25	¢34	M16×1.5	φ18	14	10	10	-	-	-	-	-	_	-	-	-	-		-	-		-	-	-
φ <b>4</b> 0	30	ф40	M20×1.5	φ22.4	19	11	10	25	φ <b>3</b> 6	M16	5×1.5	φ18	14	10	10	35	φ <b>4</b> 3	M2	24×1.5	6   <b></b>	2	4	14	17
φ50	35	ф <b>4</b> 6	M24×1.5	φ <b>2</b> 8	24	14	10	30	φ <b>4</b> 0	M20	)×1.5	φ22.4	19	11	10	45	φ50	МЗ	80×1.5	6 <b>0</b> 35	5.5 3	0	16	17
φ <b>6</b> 3	45	φ <b>5</b> 5	M30×1.5	φ <b>35.5</b>	30	16	10	35	φ <b>4</b> 6	M24	×1.5	φ <b>2</b> 8	24	14	10	60	φ <b>6</b> 5	МЗ	89×1.5	φ45	6 4	1	20	19
φ80	60	ф <b>6</b> 5	M39×1.5	φ <b>4</b> 5	41	20	10	45	φ55	M30	)×1.5	φ35.5	30	16	9	75	φ80	M4	8×1.5	φ56	5 5	0	23	20
φ <b>1</b> 00	75	φ80	M48×1.5	φ56	50	23	10	60	φ <b>6</b> 5	M39	)×1.5	φ45	41	20	10	95	φ95	M6	64×2	φ71	6	5	27	23
φ125	95	ф <b>9</b> 5	M64×2	φ71	65	27	10	75	φ80	M48	8×1.5	φ56	50	23	10	120	φ115	M8	80×2	φ90	8 8	5	30	17
φ <b>140</b>	110	φ105	M72×2	φ80	75	31	10	80	φ <b>8</b> 5	M56	i×2	φ63	55	24	10	140	φ125	M9	)5×2	φ1C	0 -	- [[ h	Drill Iole	17
φ <b>15</b> 0	115	φ110	M76×2	φ85	80	33	10	85	φ90	M60	)×2	φ67	60	30	10	140	φ125	M9	95×2	φ1C	0 -	-   [ h	Drill Iole	15
φ <b>16</b> 0	120	φ115	M80×2	φ90	85	33	10	95	φ <b>9</b> 5	M64	×2	φ71	65	27	10	150	φ140	M1	00×2	φ11	2 -	-   [   h	Drill Iole	16
φ <b>1</b> 80	140	φ125	M95×2	φ100	-	Drill hole	10	110	φ105	M72	2×2	φ80	75	31	10	-	-		-	-	.   -	-	-	-
φ <b>2</b> 00	150	φ <b>1</b> 40	M100×2	φ112	-	Drill hole	10	120	φ115	M80	)×2	φ90	85	33	10	-	-		-	-	·   -	-	-	-
φ224	180	φ <b>1</b> 50	M120×2	φ125	-	hole	10	140	φ125	M95	i×2	φ100	-	hole	10	-	-		-	-	·   -	-	-	-
φ <b>250</b>	195	φ <b>1</b> 70	M130×2	φ <b>1</b> 40	-	brill	10	150	φ140	M10	00×2	φ112	-	Drill   hole	10	-	-		-	-	-   -	-	-	-
Symbol																		W	1	X	ח		70	•
Bore	C	В	CD	E		E	Ξ	F	Ľ	FP	HL	L	N	1R	PJ	U	B B	•c	Δ	B•C		B•		, Δ
¢32	2!	5 ^{+0.4}	¢16 ^{H9} /40	□58		Rc 3	3/8		38	38	141	R20	R1	6	90	5	50 3	0	_	209	-	22	5	_
φ40	2!	$5^{+0.4}_{+0.1}$	$\phi 16 \frac{H9}{49}$	□65		Rc 3	3/8	:	38	38	141	R20	R1	6	90	Ę	50 3	0	35	209	214	22	5 2	230
φ50	31.5	$5^{+0.4}_{+0.1}$	$\phi 20 \frac{H9}{f8}$			Rc 1	/2		45	42	155	R25	R2	20	98	63	.5 3	0	41	230	241	25		261
φ63	4(	$0^{+0.4}_{+0.1}$	$\phi$ 31.5 $\frac{H9}{f8}$	□90		Rc 1	/2	(	63	46	163	R40	R3	31.5	102	8	30 3	5	48	261	274	292	2.5	305.5
φ80	4(	0 ^{+0.4} 0+0.1	φ31.5 H9/f8	0110		Rc 3	3/4	-	72	56	184	R40	R3	31.5	110	8	30 3	5	51	291	307	32	2.5	338.5
φ <b>1</b> 00	50	0+0.4 0+0.1	$\phi 40 \frac{\text{H9}}{\text{f8}}$	□135	5	Rc 3	3/4	8	34	58	192	R50	R4	10	116	10	00 4	0	57	316	333	35	6 3	373
φ125	63	3 ^{+0.4} 3 _{+0.1}	$\phi 50 \frac{H9}{f8}$	□165	5	Rc 1		1(	00	67	220	R62	R5	50	130	12	26 4	5	57	365	377	41	5 4	427
φ <b>140</b>	80	0 ^{+0.6} 0 _{+0.1}	$\phi 63 \frac{H9}{f8}$	□185	5	Rc 1		1:	20	69	230	R79	R	63	138	16	50 5	0	57	400	407	46	3 4	470
φ <b>15</b> 0	80	0+0.6 +0.1	$\phi 63 \frac{H9}{f8}$	□196	5	Rc 1		1:	22	71	240	R82	R	63	146	16	50 5	0	57	412	419	47	5 4	482
φ <b>16</b> 0	80	0+0.6 +0.1	$\phi$ 71 $\frac{H9}{f8}$	□210		Rc 1		1:	37	74	253	R89	R7	71	156	16	50 5	5	57	445	447	510	6 5	518
φ180	100	0 ^{+0.6} +0.1	φ80 <u>H9</u> f8	□235	5	Rc 1	1/4	1	50	75	275	R100	R	30	172	20	00 5	5	-	480	_	56	b	_
φ200	12	5 ^{+0.6} +0.1	$\phi 90 \frac{H9}{f8}$	□262	2	Rc 1	1/2	1	70	85	301	R115	5 RS	90	184	2	51 5	5	-	526	-	61	6	-
φ224	12	5 ^{+0.6} +0.1	φ100 <u>H9</u> f8	□292	2	Rc 1	1/2	18	85	89	305	R125	5 R1	00	184	25	51 6	0	-	550	-	65	D	_
φ <b>2</b> 50	12	5+0.6 +0.1	$\phi 100  \frac{\text{H9}}{\text{f8}}$	□325	5	Rc 2	2	18	85 1	06	346	R125	5 R1	00	200	2	51 6	5	-	596	-	69	6	-

• Allowance of B is h8, allowance of MM is f8.

#### With boots

Symbol	Bore	ф <b>3</b> 2	φ <b>4</b> 0	φ50	ф <b>6</b> 3	φ80	φ100	φ125	φ140	φ150	φ160	φ180	ф200	ф224	φ <b>2</b> 50
	Rod B	40	50	63	71	80	100	125	125	140	140	160	180	180	200
WW	Rod C	_	50	50	63	71	80	100	125	125	125	125	140	160	180
	Rod A	-	63	71	80	100	125	140	160	160	180	-	-	_	-
	Rod B	45	45	45	55	55	55	65	65	65	65	65	65	80	80
Х	Rod C	_	45	45	55	55	55	65	65	65	65	65	65	80	80
	Rod A	-	45	55	55	55	65	65	65	65	65	-	-	-	-

78

### 7/14 MPa double acting hydraulic cylinder Double acting single rod/double rod

Unit: mm





TA 70H-8 1 TA Bore В В Stroke -ACRod For the rod dia. of 140H-8 1 TA Bore В В Stroke -AC OF DF \$100 or more, a drill dia. hole will be applied. VD *\phi*100 *\$*99.5 *ф*12 2-DF S *ϕ*111.5 *ф*15 *ф*112 В OF 35 FP PJ + stroke W 2-EE SL A JR B TD Е D MM KK Ć Cushion valve тс TL ΒB TL φ32 - φ80 :Max. 7 HL + stroke φ100 - φ150 :Max. 11 UT XG

• For the dimensions other than in the diagram above, refer to the specification of the SD type (standard type).

φ160

:Max. 13

- For the mounting of switches, refer to the dimensional drawings of "Switch set". All the contents other than "Switch mounting dimensions" are identical.
- The cushion valve and air vent positions of the TA type are ©, on account of the structural conditions (rod cover side).

Double rod type (rod B, C) For both ends loaded type



ZJ + stroke

• The switch set ( $\phi$ 32 -  $\phi$ 140) is also within the fabrication range.

#### With boots

φww		
Rod B • C Nylon tarpaulin Chloroprene	$ \begin{pmatrix} \phi 32 \\ \phi 40 & \bullet \phi 50 \\ \phi 63 & - \phi 100 \\ \phi 125 & - \phi 160 \end{pmatrix} $	1/3         Stroke + X           1/3.5         Stroke + X           1/4         Stroke + X           1/5         Stroke + X
Conex	$ \begin{pmatrix} & \phi 32 \\ & \phi 40 & \bullet \phi 50 \\ & \phi 63 & - \phi 100 \\ & \phi 125 & \bullet \phi 140 \\ & \phi 150 & - \phi 160 \\ \end{pmatrix} $	1/2         Stroke + X           1/2.5         Stroke + X           1/3         Stroke + X           1/3.5         Stroke + X           1/3.5         Stroke + X           1/4         Stroke + X

	Standard	Semi-st	andard										
Material	Nylon tarpaulin	Chloroprene	Conex										
Resistible temperature	80°C	130°C	200°C										
temperature         Loc of the control of the con													
Rod A Nylon tarpaulin Chloroprene	(	1/3.5 Strol 0 1/4 Strol 60 1/5 Strol	$\begin{pmatrix} xe + X \\ xe + X \\ xe + X \end{pmatrix}$										
Conex	$\begin{pmatrix} \phi 40 \\ \phi 50 & -\phi 80 \end{pmatrix}$	1/2.5 Strol ) 1/3 Strol	(e + X (e + X										

1/3.5

1/4

Stroke + X

Stroke + X

φ100

φ125 - φ160

#### **Dimensional table**

Symbol			Ro	d B						Ro	d C								Roc	A			
Bore	А	В	KK	MM	S	SL	VD	A	в	KK	М	м	s	SL	VD	A	В	KK	(	MM	s	SL	VD
φ <b>3</b> 2	25	ф <b>3</b> 4	M16×1.5	φ18	14	10	10	-	-	-	-	-	-	-	-	-	-	-		-	_	-	-
φ40	30	φ <b>4</b> 0	M20×1.5	φ22.4	19	11	10	25	φ36 N	116×1.5	φ18	3	14	10	10	35	ф <b>4</b> 3	$M24 \times$	1.5	φ <b>2</b> 8	24	14	17
φ50	35	φ <b>4</b> 6	M24×1.5	φ28	24	14	10	30	φ40 N	120×1.5	φ22	2.4	19	11	10	45	φ50	M30×	1.5	φ <b>35</b> .5	30	16	17
φ <b>6</b> 3	45	φ55	M30×1.5	¢35.5	30	16	10	35	φ46 N	124×1.5	φ28	3   1	24	14	10	60	ф <b>6</b> 5	M39×	1.5	φ45	41	20	19
φ80	60	φ <b>6</b> 5	M39×1.5	φ <b>4</b> 5	41	20	10	45	φ55 N	130×1.5	φ35	5.5	30	16	9	75	φ80	M48×	1.5	φ56	50	23	20
φ <b>1</b> 00	75	φ80	M48×1.5	φ <b>5</b> 6	50	23	10	60	φ65 N	139×1.5	φ45	; .	41	20	10	95	φ <b>9</b> 5	M64×	2	<b>φ71</b>	65	27	23
φ <b>125</b>	95	φ95	M64×2	φ71	65	27	10	75	φ80 N	148×1.5	φ56	5	50	23	10	120	φ115	M80×	2	φ90	85	30	17
φ <b>1</b> 40	110	φ105	M72×2	φ80	75	31	10	80	φ85 N	156×2	ф63	3	55	24	10	140	φ125	M95×	2	φ <b>1</b> 00	-	Drill hole	17
φ <b>15</b> 0	115	φ <b>110</b>	M76×2	φ <b>8</b> 5	80	33	10	85	φ90 N	160×2	φ67		60	30	10	140	φ125	M95×	2	φ <b>1</b> 00	-	Drill hole	15
φ <b>16</b> 0	120	φ115	M80×2	φ90	85	33	10	95	φ95 N	164×2	φ71		65	27	10	150	φ140	M100	×2	φ <b>112</b>	-	Drill hole	16
Symbol																							
Symbol	BB	E	EE		FP	HL	JR	LZ	: PJ	тс	;	Т	D	TL	-	UT	V 	V	Def	XG		ZJ	^
Bore				/2							0						B•C	A	D•(		В		A
¢32	11	_58	Rc 3	/8	38	141	R2	166	3 90	58_	0.3 0	φ20	e9	20		98	30	-	6	2 –	1	/1	-
φ40	11	□65	Rc 3	/8	38	141	R2	166	5 90	69_	0.3	φ20	e9	20		109	30	35	62	2 67	1	71   '	176
φ50	11	□76	Rc 1	/2	42	155	R2.5	182	2 98	85_	0.35 0	φ25	e9	25	_	135	30	41	6	6 77	18	85   ⁻	196
φ <b>6</b> 3	13	□90	Rc 1	/2	46	163	R2.5	194	4   102	2 98_	0.35	φ31.	.5e9	31.	.5	161	35	48	74	4 87	19	98   2	211
φ80	16	11	0 Rc 3	/4	56	184	R2.5	222	2   110	118_	0.35 0	φ31	.5e9	31.	.5	181	35	51	8	2 98	3 2	19 2	235
φ100	18	13	5 Rc 3	/4	58	192	R3	232	2   116	5   145_	0.4	φ40	e9	40		225	40	57	8	9   106	5 23	32   2	249
φ125	21	□16	5 Rc 1	_	67	220	R3	264	4   130	175_	0.4	φ50	e9	50		275	45	57	10	3   115	5 20	65   2	277
φ140	22	1218	5 Rc 1		69	230	R4	276	5   138	195_	0.46	φ <b>6</b> 3	e9	63		321	50	57	11:	2   119	28	80   2	287
φ <b>15</b> 0	25	□19	6 Rc 1		71	240	R4	288	3   146	46 206 _0		φ <b>6</b> 3	e9	63	1	332	50	57	11:	2   119	) 29	90   2	297
φ <b>16</b> 0	25	□21	0   Rc1		74	253	R4	304	4   156	218_	0.46	φ <b>7</b> 1	e9	71		360	55	57	12	6   128	3 30	38   3	310

• Allowance of B is h8, allowance of MM is f8.

With bo	ots
---------	-----

Symbol	Bore	φ <b>3</b> 2	φ40	φ50	ф <b>6</b> 3	φ80	φ100	φ125	φ <b>14</b> 0	φ150	φ <b>16</b> 0
	Rod B	40	50	63	71	80	100	125	125	140	140
ww	Rod C	-	50	50	63	71	80	100	125	125	125
	Rod A	-	63	71	80	100	125	140	160	160	180
	Rod B	45	45	45	55	55	55	65	65	65	65
х	Rod C	_	45	45	55	55	55	65	65	65	65
	Rod A	-	45	55	55	55	65	65	65	65	65

### 7/14 MPa double acting hydraulic cylinder Double acting single rod/double rod

Unit: mm

CAD/DATA is 70-140H-8/TH8 Bore A.C available.





- For the dimensions other than in the diagram above, refer to the specification of the SD type (standard type).
- For the mounting of switches, refer to the dimensional drawings of "Switch set". All the contents other than "Switch mounting dimensions and minimum PN" are identical to this table.
- Please specify the PH dimension in case of TC mounting transfer.
- The minimum available stroke for each bore (140mm to 250mm) is on the table below.

Minimum available strokes

Bore	Min. stroke	Bore	Min. stroke	M
<i>ϕ</i> 140	6	<i>\phi</i> 200	18	
<i>ф</i> 150	0	<i>ф</i> 224	27	
<i>ф</i> 160	8	<i>\phi</i> 250	27	
<i>ф</i> 180	12			

With boots



#### Double rod type ( $\phi$ 32 - $\phi$ 160/rod B, C) For both ends loaded type



• The switch set ( $\phi$ 32 -  $\phi$ 140) is also within the fabrication range.

70-140H-8/TH8 Bore K

	Standard	Semi-st	andard									
Material	Nylon tarpaulin	Chloroprene	Conex									
Resistible temperature	80°C	130°C	200°C									
Notes)  Remember that the resistible temperatures shown in the table above are for t boots, not for the cylinder.  Conex is the registered trademark of Teijin Ltd.  If decimals are included into the calculation results, raise them to the next who number.  The boots have been mounted at our factory prior to delivery.												
Rod A Nylon tarpaulin Chloroprene	(	1/3.5 Strok 0 1/4 Strok 60 1/5 Strok	$\begin{pmatrix} xe + X \\ xe + X \\ xe + X \end{pmatrix}$									
Conex	(	1/2.5 Strol 0 1/3 Strol 1/3.5 Strol	ke + X ke + X ke + X									

φ125

-  $\phi$  160

1/4

Stroke + X

#### **Dimensional table**

Symbol				Ro	d B							Roo	d C							I	Rod	A			
Bore	А	В	КК		MM	S	SL	_ \/C	D A	В	К	K	MM	S	SL	VD	Α	В		KK		MM	S	SL	VD
φ <b>3</b> 2	25	ф <b>3</b> 4	M16×1	1.5	φ18	14	10	) 10	) –	-	-	-	_	_	-	-	-	_		_		_	-	-	_
φ40	30	φ <b>4</b> 0	M20×1	1.5	φ22.4	19	11	10	25	φ36	M16	×1.5	φ18	14	10	10	35	φ43	M	124×1	.5	φ28	24	14	17
φ50	35	φ46	M24×1	1.5	φ <b>2</b> 8	24	14	10	30	φ40	M20	×1.5	φ22.4	19	11	10	45	φ50	M	130×1	.5	φ <b>35</b> .5	30	16	17
φ <b>6</b> 3	45	φ55	M30×1	1.5	φ35.5	30	16	5 10	35	φ46	M24	×1.5	φ <b>2</b> 8	24	14	10	60	φ <b>6</b> 5	M	<b>1</b> 39×1	.5	φ45	41	20	19
φ80	60	ф <b>6</b> 5	M39×1	1.5	φ <b>4</b> 5	41	20	) 10	45	φ55	M30	×1.5	φ <b>35</b> .5	30	16	9	75	φ80	M	148×1	.5	φ56	50	23	20
φ100	75	φ80	M48×1	1.5	φ56	50	23	3 10	60	φ65	M39	M39×1.5		41	20	10	95	φ95	M	164×2	2	<b>φ71</b>	65	27	23
φ125	95	φ95	M64×2	2	φ71	65	27	10	) 75	φ80	M48	×1.5	φ <b>5</b> 6	50	23	10	120	φ11	5 N	180×2	2	φ90	85	30	17
φ <b>140</b>	110	φ105	M72×2	2	φ80	75	31	10	80	φ85	M56	×2	ф <b>6</b> З	55	24	10	140	φ12	5 M	195×2	2	φ100	-	Drill hole	17
φ <b>15</b> 0	115	φ110	M76×2	2	φ85	80	33	3 10	85	φ90	M60	×2	φ <b>6</b> 7	60	30	10	140	φ12	5 M	195×2	2	φ100	-	Drill hole	15
φ <b>16</b> 0	120	φ115	M80×2	2	φ90	85	33	3 10	95	φ95	M64	×2	φ <b>7</b> 1	65	27	10	150	φ14	.0 M	1100>	2	φ112	-	Drill hole	16
φ180	140	φ125	M95×2	2	φ100	-	hol	e 10	) 110	φ10	5 M72	×2	φ <b>8</b> 0	75	31	10	-	-		-		-	-	-	-
φ <b>200</b>	150	φ <b>1</b> 40	M100>	<2	φ112	-	hole	e 10	) 120	φ11 <b>:</b>	5 M80	×2	φ <b>90</b>	85	33	10	-	-		-		-	-	-	-
φ224	180	φ <b>1</b> 50	M120>	<2	φ125	-	hol	" 10 	) 140	φ12 <b>:</b>	5 M95	×2	φ100	-	hole	10	-	-		-		-	-	-	-
φ <b>250</b>	195	φ <b>17</b> 0	M130>	<2	φ <b>1</b> 40	-	hol	"  10	)   150	φ140	0 M10	0×2	φ112	-	hole		-	-		-		-	-	-	-
Symbol											Minim	um PH								V	V	X	V	Z	J
Bore	BB	BD	E		EE	F	P	HL	JR	LZ	B•C	A	- PJ	T	)	ΤL	ΤM		UM	B•C	Α	B•C	Α	B•C	Α
φ32	11	28	⊒58	F	Rc 3/8		38	141	R2	166	105	_	90	¢20e	9	20	58 _0	.3	98	30	-	113	-	171	-
φ <b>4</b> 0	11	28	_65	F	Rc 3/8		38	141	R2	166	105	110	90	ф20e	9	20	69 _0	.3	109	30	35	113	118	171	176
φ50	11	33	□76	F	Rc 1/2		42	155	R2.5	182	113.5	124.5	98	ф25e	9	25	85 _0	.35	135	30	41	121	132	185	196
φ63	13	43	_90	F	Rc 1/2		46	163	R2.5	194	127.5	140.5	102	φ31. <del>{</del>	5e9	31.5	98 _0	.35	161	35	48	132	145	198	211
φ80	16	43	□110	F	Rc 3/4		56	184	R2.5	222	140.5	156.5	5 110	φ31. <del>{</del>	5e9	31.5	118 _0	.35	181	35	51	146	162	219	235
φ <b>1</b> 00	18	53	_135	F	Rc 3/4		58	192	R3	232	152.5	169.5	116	ф40e	9	40	145 _0	.40	225	40	57	156	173	232	249
φ <b>125</b>	21	58	_165	F	Rc 1		67	220	R3	264	174	186	130	φ50e	9	50	175 _0	.40	275	45	57	177	189	265	277
φ <b>1</b> 40	22	78	_185	F	Rc 1		69	230	R4	276	191	_	138	ф63e	9	63	195 _0	.46	321	50	57	188	195	280	287
φ <b>15</b> 0	25	78	_196	F	Rc 1		71	240	R4	288	193	-	146	ф63e	9	63	206 _0	.46	332	50	57	194	201	290	297
φ <b>16</b> 0	25	88	<u>_</u> 210	F	Rc 1		74	253	R4	304	211	-	156	φ71e	9	71	218 _0	.46	360	55	57	207	209	308	310
φ <b>1</b> 80	27	98	_235	F	Rc 1 ¹ /4		75	275	R4	-	225	-	172	ф80e	9	80	243 _0	.46	403	55	-	216	-	330	-
φ200	29	108	□262	F	Rc 1 ¹ /2		85	301	R5	-	244	-	184	φ90e	9	90	272 _0	.52	452	55	_	232	-	356	-
φ224	34	117	292	F	Rc 1 ¹ /2		89	305	R5	-	257.5	-	184	φ100	e9	100	300 _0	.52	500	60	-	241	-	365	-
φ <b>250</b>	37	117	_325	F	Rc 2	1	06	346	R5	-	287.5	-	200	φ100	e9	100	335 _0	.57	535	65	-	271	-	411	-

• Allowance of B is h8, allowance of MM is f8.

#### With boots

Symbol	Bore	ф <b>3</b> 2	φ <b>4</b> 0	φ50	ф <b>6</b> 3	φ80	φ100	φ125	φ140	φ150	φ160	φ180	φ200	φ224	φ <b>2</b> 50
	Rod B	40	50	63	71	80	100	125	125	140	140	160	180	180	200
WW	Rod C	_	50	50	63	71	80	100	125	125	125	125	140	160	180
	Rod A	_	63	71	80	100	125	140	160	160	180	-	-	_	-
	Rod B	45	45	45	55	55	55	65	65	65	65	65	65	80	80
X	Rod C	_	45	45	55	55	55	65	65	65	65	65	65	80	80
	Rod A	-	45	55	55	55	65	65	65	65	65	-	-	-	-

#### Switch set

70H-8R	2 SD	Bore	В	В	200	- A	В	Switch symbol	Switch quantity
140H-8R	2 SD	Bore	В	В	200	- A	В	Switch symbol	Switch quantity

#### AX type (contact), AX type (no contact)



#### WR type (contact), WS type (no contact/2-wire, 2-LED type) (cutting fluid proof type)



#### Minimum dimension PH • PN of switch set cylinder 70/140H-8R

• TC type



• FK type



• The minimum dimension PH of the switch set cylinder is the dimension when the trunnion is moved toward the rod side in case that the switch is mounted to the rod side.

If the boots are equipped, the dimension W is modified. In such a case, specify the dimension PH.

#### **Dimensional table**

Symbol		RV			RY			UX			The mi	nimum	dimens	ion PH	The mi	nimum	dimens	ion PN
	AX	SR	WR•WS	AX	SR	WR•WS	AX type	SR	WR	ws	AX	SR	WR	ws	AX	SR	WR	ws
Bore	type	type	type	type	type	type	Contact No contact	type	type	type	type	type	type	type	type	type	type	type
φ <b>3</b> 2	36	40	39	72	80	78	13	6	9	12	171	181	190	193	157	167	176	179
φ <b>4</b> 0	40	46	43	80	92	86	14	6	9	13	171	181	190	193	157	167	176	179
φ50	43	50	47	86	100	94	15	7	9	14	178.5	193.5	198.5	203.5	162	177	182	187
φ <b>6</b> 3	50	56	53	100	112	106	17	10	13	16	196.5	211.5	216.5	218.5	175	190	195	197
φ80	60	64	63	120	128	126	19	11	13	17	211.5	226.5	229.5	233.5	190	205	208	212
φ <b>1</b> 00	70	74	72	140	148	142	21	13	14	21	224.5	239.5	242.5	249.5	198	213	216	223
φ <b>125</b>	83	89	85	166	178	170	23	17	19	23	250	265	269	273	221	236	240	244
φ <b>1</b> 40	91	-	-	182	-	-	26	-	-	-	280	-	-	-	241	-	-	-

Note) The dimension UX indicates the optimum switch mounting position at the detection of the stroke end.

#### Working range and difference

			Con	tact				No co	ontact	
Bore	AX	type	SR	type	WR	type	AX	type	WS	type
mm	Working range	Difference								
¢32			7-10		4-9					
φ40									10.14	
φ50	4-14		7 12		6 1 2		3-8		10-14	
<b>ф63</b>		2 or less	7-12	3 or less	0-12	2 or less		1 or less		1 or less
φ80		2 01 1000		0 01 1000		2 01 1000		1 01 1633	11-17	1 01 1633
φ <b>1</b> 00	11-18		10-16		10-17		4-10		10.10	
φ <b>125</b>	5-15		9-15		5-12		4-10		12-10	
φ <b>1</b> 40	11-20		-	_	_	_	6-13		_	_

### 7/14 MPa double acting hydraulic cylinder Double acting single rod/double rod

Unit: mm

CAD/DATA is 70-140H-8/TH8 Bore K available.

# •

### Rod end attachment

#### Rod end eye (T-end)







KK

ED

φ**1**80 - φ**2**50





#### Eye joint with spherical bearing

**φ40 - φ63** 

ER



RA

MAX.HG

grease nipple

CE

EL

貽

LE







set screw

• Inner diameter and installation width of bearing are conformed to JIS-B8369 regulation.

#### Dimensional table/rod end eye (T-end)

Symbol	Part	code	A	v	05	014	0.0						К	K		
Bore	Rod B	Rod C	Rod B	Rod C	CE	CK	CR	ED	EF	EM	ER	J	Rod B	Rod C	LE	RA
φ <b>3</b> 2	RTH-16-H	-	27	_	60	φ16H10	20	φ <b>3</b> 9	-	25 ^{-0.1} -0.4	R23	8	M16×1.5	-	23	80
φ <b>4</b> 0	RTH-20-H	RTH-16-H	32	27	60	φ16H10	20	φ <b>3</b> 9	-	25 ^{-0.1} -0.4	R23	8	M20×1.5	M16×1.5	23	80
φ50	RTH-24-H	RTH-20-1-H	37	32	70	φ20H10	25	φ49	-	$31.5_{-0.4}^{-0.1}$	R29	10	M24×1.5	M20×1.5	28	95
φ <b>6</b> 3	RTH-30-H	RTH-24-1-H	47	37	115	φ31.5H10	35	φ62	-	$40^{-0.1}_{-0.4}$	R39	15	M30×1.5	M24×1.5	43	150
φ <b>8</b> 0	RTH-39-H	RTH-30-H	62	47	115	φ31.5H10	35	φ62	_	$40 \substack{-0.1 \\ -0.4}$	R39	15	M39×1.5	M30×1.5	43	150
φ <b>1</b> 00	RTH-48-H	RTH-39-1-H	77	62	145	φ40H10	40	φ79	-	$50^{-0.1}_{-0.4}$	R45	20	M48×1.5	M39×1.5	55	185
φ <b>125</b>	RTH-64-H	RTH-48-1-H	97	77	180	φ50H10	50	φ100	-	$63^{-0.1}_{-0.4}$	R54	30	M64×2	M48×1.5	65	230
φ <b>140</b>	RTH-72-H	RTH-56-H	112	82	225	φ63H10	65	φ <b>1</b> 30	-	80 ^{-0.1} 0.6	R74	30	M72×2	M56×2	85	290
φ <b>15</b> 0	RTH-76-H	RTH-60-H	117	87	225	φ63H10	65	φ <b>1</b> 30	_	80 ^{-0.1} 0.6	R74	30	M76×2	M60×2	85	290
φ <b>16</b> 0	RTH-80-H	RTH-64-1-H	122	97	240	φ71H10	70	φ140	-	80 ^{-0.1} -0.6	R77	40	M80×2	M64×2	90	310
φ <b>1</b> 80	RTH-95-H	RTH-72-1-H	142	112	280	φ80H10	80	160	130	100 ^{-0.1} -0.6	R90	40	M95×2	M72×2	100	360
φ200	RTH-100-H	RTH-80-1-H	152	122	310	φ90H10	90	180	140	$125{}^{-0.1}_{-0.6}$	R99	50	M100×2	M80×2	120	400
φ224	RTH-120-H	RTH-95-1-H	182	142	370	φ100H10	100	200	170	$125_{-0.6}^{-0.1}$	R112	50	M120×2	M95×2	130	470
φ <b>2</b> 50	RTH-130-H	RTH-100-1-H	197	152	370	φ100H10	100	200	180	$125_{-0.6}^{-0.1}$	R112	50	M130×2	M100×2	130	470

#### Dimensional table/Eye joint with spherical bearing

	Symbol	Part	code	A	V		Ę	05			-0				К	ïκ	. –	
I	Bore	Rod B	Rod C	Rod B	Rod C	CD	CE	CF	ED	EF	EG	EIVI	EN	EK	Rod B	Rod C	LE	RA
	<i>φ</i> 40	RSH-20	RSH-16	32	27	20 ⁰ 0.012	67	-	55	30	Ι	13	$16_{-0.12}^{0}$	R27.5	M20×1.5	M16×1.5	25	94.5
	$\phi 50$	RSH-24	RSH-20-1	37	32	25 _0.012	78	-	65	35	-	17	20 _{-0.12}	R32.5	M24×1.5	M20×1.5	31	110.5
	<i>ф</i> 63	RSH-30	RSH-24-1	47	37	30 _0.012	98	-	80	45	-	19	22_0_12	R40	M30×1.5	M24×1.5	38	138
	<i>\</i> \$0	RSH-39	RSH-30-1	62	47	40 _0.012	125	60	100	55	69	23	28_0_12	R50	M39×1.5	M30×1.5	48	175
	<i>ф</i> 100	RSH-48	RSH-39-1	77	62	50 _0012	152	50	120	70	93	30	35_0_12	R60	M48×1.5	M39×1.5	58	212
	<i>ф</i> 125	RSH-64	RSH-48-1	97	77	60 _0.015	187	72	150	90	105	38	44_0.15	R75	M64×2	M48×1.5	72	262

#### Dimensional table/grease nipple

Symbol	Rod B			Rod C		
Bore	grease nipple model	EL	HG	grease nipple model	EL	HG
<i>φ</i> 40	JIS A type MT6×1	11	11	JIS A type MT6×1	11	11
$\phi 50$	JIS A type MT6×1	14	11	JIS A type MT6×1	14	11
<i>\</i> 63	JIS A type Rc1/8	15	15	JIS A type MT6×1	15	15
<i>\phi</i> 80	JIS A type Rc1/8	20	15	JIS A type Rc1/8	20	15
<i>ф</i> 100	JIS A type Rc1/8	24	15	JIS A type Rc1/8	24	15
<i>ф</i> 125	JIS A type Rc1/8	28	15	JIS A type Rc1/8	28	15

#### Rod end clevis (Y-end) with pin



#### Delivery of rod end attachment (T-end, Y-end)

(1) In the case that the lock nut and rod end attachment are additionally ordered

The rod end attachment and lock nut are temporarily assembled to the piston rod for delivery. Since the lock nut is not tightened, tighten it after the position of the rod end attachment is adjusted. No set screw is included.





(2) In the case that only the rod end attachment is additionally ordered (without lock nut)

The rod end attachment is tightened to the piston rod, and a drill hole is made on the piston rod for delivery.

If a drill hole is unnecessary, advise us.

#### Floating joint (F-end)

- Note) only 70H-8 series
  - Applicable series
  - 70H-8
  - 70H-8R
  - 70H-8D
  - 70H-8RD



- Notes) The inserted distance of the floating joint into the socket must be the same as the screw dia. or shorter (screw the joint in, and after it attaches to the end, return it one or two turns, and fix with the lock nut). Excessive insertion may lead to malfunctions.
  - DO NOT use together with the CA, CS, CB, TA, and TC accessories.
  - The lock nut is indispensable in using Floating-joint.
  - Please don't miss to order the lock nut with Floatingjoint.

# 87

#### Dimensional table/rod end clevis (Y-end) with pin

Symbol	Part	code	A	V		05			014							ĸ	ΪK				
Bore	Rod B	Rod C	Rod B	Rod C	BL	CE	CK		CIVI	CR			ED	ER	J	Rod B	Rod C		RA	50	YD
¢32	RYH-16-H	-	-	-	62	60	$\phi 16 \frac{H10}{f8}$	50	25 ^{+0.4}	-	7	12.5	32	R16	-	M16×1.5	-	27	76	32	32
φ <b>4</b> 0	RYH-20-H	RYH-16-H	-	-	62	60	φ16 <u>H10</u> f8	50	25 ^{+0.4}	-	7	12.5	32	R16	-	M20×1.5	M16×1.5	27	76	32	32
φ50	RYH-24-H	RYH-20-1-H	-	-	76.5	70	φ20 <u>H10</u> f8	63.5	31.5 ^{+0.4}	-	8	16	40	R20	_	M24×1.5	M20×1.5	32	90	41	40
φ <b>6</b> 3	RYH-30-H	RYH-24-1-H	-	-	93	115	ф31.5 <u>H10</u>	80	40 ^{+0.4}	-	8	20	60	R30	_	M30×1.5	M24×1.5	50	145	60	60
φ80	RYH-39-H	RYH-30-H	-	-	93	115	ф31.5 <u>H10</u> f8	80	40 ^{+0.4}	-	8	20	60	R30	_	M39×1.5	M30×1.5	50	145	60	60
φ <b>1</b> 00	RYH-48-H	RYH-39-1-H	-	-	117	145	φ40 <u>H10</u> f8	100	50 ^{+0.4}	-	12	25	80	R40	_	M48×1.5	M39×1.5	60	185	80	80
φ <b>125</b>	RYH-64-H	RYH-48-1-H	97	77	143	180	φ50 <u>H10</u> f8	126	63 ^{+0.4}	50	12	31.5	100	R54	30	M64×2	M48×1.5	70	230	_	_
φ <b>140</b>	RYH-72-H	RYH-56-H	112	82	183	225	φ63 <u>H10</u> f8	160	80 ^{+0.6}	65	18	40	120	R72	30	M72×2	M56×2	90	290	-	_
φ <b>15</b> 0	RYH-76-H	RYH-60-H	117	87	183	225	φ63 <u>H10</u> f8	160	80 ^{+0.6}	65	18	40	120	R72	30	M76×2	M60×2	90	290	_	_
φ <b>16</b> 0	RYH-80-H	RYH-64-1-H	122	97	183	240	φ71 <u>H10</u> f8	160	80 ^{+0.6}	70	18	40	140	R77	40	M80×2	M64×2	100	310	-	_
φ <b>1</b> 80	RYH-95-H	RYH-72-1-H	142	112	210	280	φ80 <u>H10</u> f8	180	$100^{+0.6}_{+0.1}$	80	24	40	160	R90	40	M95×2	M72×2	110	360	_	_
φ <b>2</b> 00	RYH-100-H	RYH-80-1-H	152	122	260	310	φ90 <u>H10</u> f8	230	$125^{+0.6}_{+0.1}$	90	24	52.5	180	R99	50	M100×2	M80×2	130	400	-	_
φ224	RYH-120-H	RYH-95-1-H	182	142	280	370	φ100 H10 f8	250	125 ^{+0.6}	100	24	62.5	200	R112	50	M120×2	M95×2	140	470	-	_
φ <b>250</b>	RYH-130-H	RYH-100-1-H	197	152	280	370	φ100 H10 f8	250	$125^{+0.6}_{+0.1}$	100	24	62.5	200	R112	50	M130×2	M100×2	140	470	_	_

#### Dimensional table/floating joint (F-end)

Applica	ble bore	Dout on do	_	<b>D</b> .	Da			<b>F</b> 0			FK			50		-	
Rod B	Rod C	Part code	A	B1	B2	е	FA	FC	FD	FJ	FK	FIN	FN	FQ	FR	n	ĸĸ
φ32	φ40	RFH-16	32	22	17	1.5	43	46	13	89	16	φ40	24	8	28	10	M16×1.5
φ40	φ50	RFH-20	40	27	22	2	53	57	15	110	22	φ50	30	9	35	12	M20×1.5
φ50	φ63	RFH-24	46	32	24	2.5	62	67	18	129	24	φ <b>6</b> 4	36	12	41	14	M24×1.5
φ63	φ80	RFH-30	58	41	32	2.5	78	83	21	161	30	φ76	46	14	52	17	M30×1.5

#### Parallel pin



#### Keeper plate



#### Dimensional table/Parallel pin

Symbol Bore	BL	С	СК	D	E
<i>ø</i> 32	62	4	<i>ф</i> 16	3	3
<i>φ</i> 40	62	4	<i>ф</i> 16	3	3
$\phi 50$	76.5	5	<i>ф</i> 20	3	3
<i>\</i> \$63	93	5	<i>¢</i> 31.5	3	4.75
<i>\</i> \$80	93	5	<i>ø</i> 31.5	3	4.75
<i>ф</i> 100	117	7	<i>φ</i> 40	5	5
<i>ф</i> 125	143	7	<i>φ</i> 50	5	5
<i>ф</i> 140	183	10	<i>ф</i> 63	8	8
<i>ф</i> 150	183	10	<i>ф</i> 63	8	8
<i>ф</i> 160	183	10	<i>φ</i> 71	8	8

• Allowance of CK is f8.

#### **Dimensional table/Keeper plate**

Symbol Bore	F	G	Н	I	J	к	L	Volt size
<i>ø</i> 32	25	14	7	6	13	3	$\phi 6.5$	M6
<i>φ</i> 40	25	14	7	6	13	3	$\phi 6.5$	M6
$\phi 50$	32	18	8	7	15	4.5	φ7	M6
<i>φ</i> 63	32	18	8	7	15	4.5	φ7	M6
<i>\</i> \$80	32	18	8	7	15	4.5	φ7	M6
<i>φ</i> 100	50	30	10	8	18	6	<i>ф</i> 10	M8
<i>ф</i> 125	65	40	12	10	22	6	<i>ф</i> 12	M10
<i>φ</i> 140	75	48	17	13	30	9	<i>ф</i> 14	M12
<i>ф</i> 150	75	48	17	13	30	9	<i>ф</i> 14	M12
<i>ф</i> 160	75	48	17	13	30	9	<i>ф</i> 14	M12

70/140H-8

# 70/140H-8 7/14 MPa Double a

### 7/14 MPa double acting hydraulic cylinder Double acting single rod/double rod

Unit: mm

70-140H-8/TH8 Bore K available.



When rod end attachment is required (rod dia. A type)



 It is recommended to modify the thread dia., dimension KK, to that of the rod B (Ex.: for 50 mm dia., M30 × 1.5→M24 × 1.5), and attach the rod end attachment for the rod B. In such a case, specify the dimensions, A and KK.

#### Lock nut



• The type with a bore of  $\phi$ 180 or more is also within the semi-standard fabrication range.

The guide of the fitting length of the rod end attachment and piston rod is approx. 80% of the thread dia. If the fitting length is insufficient when the lock nut is used, it is required to lengthen the thread length (dimension A) as shown in the figure below.



#### **Dimensional table**

Symbol	Rod A t	hread part dimensions	Rod B t	hread part dimensions	Rod end attachment parts	s code in the case of the th	read dimensions of rod B
Bore	А	КК	А	КК	Rod end eye	Rod end clevis	F-joint
<i>φ</i> 40	35	M24×1.5	30	M20×1.5	RTH-20-H	RYH-20-H	RFH-20
<i>φ</i> 50	45	M30×1.5	35	M24×1.5	RTH-24-H	RYH-24-H	RFH-24
<i>ф</i> 63	60	M39×1.5	45	M30×1.5	RTH-30-H	RYH-30-H	RFH-30
<i>ø</i> 80	75	M48×1.5	60	M39×1.5	RTH-39-H	RYH-39-H	-
<i>ф</i> 100	95	M64×2	75	M48×1.5	RTH-48-H	RYH-48-H	_
<i>ф</i> 125	120	M80×2	95	M64×2	RTH-64-H	RYH-64-H	-
<i>ф</i> 140	140	M95×2	110	M72×2	RTH-72-H	RYH-72-H	-
<i>ф</i> 150	140	M95×2	115	M76×2	RTH-76-H	RYH-76-H	-
<i>ф</i> 160	150	M100×2	120	M80×2	RTH-80-H	RYH-80-H	-

#### Dimensional table/lock nut

Symbol		R	od B				R	od C				R	od A		
Bore	Parts code	В	С	d	Н	Parts code	В	С	d	Н	Parts code	В	С	d	Н
φ <b>3</b> 2	LNH-16F-H	22	25.4	M16×1.5	10	-	-	-	_	-	-	-	-	-	-
φ <b>4</b> 0	LNH-20F-H	27	31.2	M20×1.5	12	LNH-16F-H	22	25.4	M16×1.5	10	LNH-24F-H	32	37.0	M24×1.5	14
φ50	LNH-24F-H	32	37.0	M24×1.5	14	LNH-20F-H	27	31.2	M20×1.5	12	LNH-30F-H	41	47.3	M30×1.5	17
φ <b>6</b> 3	LNH-30F-H	41	47.3	M30×1.5	17	LNH-24F-H	32	37.0	M24×1.5	14	LNH-39F-H	55	63.5	M39×1.5	20
φ <b>80</b>	LNH-39F-H	55	63.5	M39×1.5	20	LNH-30F-H	41	47.3	M30×1.5	17	LNH-48F-H	70	80.8	M48×1.5	26
φ <b>1</b> 00	LNH-48F-H	70	80.8	M48×1.5	26	LNH-39F-H	55	63.5	M39×1.5	20	LNH-64F-H	90	104	M64×2	35
φ <b>125</b>	LNH-64F-H	90	104	M64×2	35	LNH-48F-H	70	80.8	M48×1.5	26	LNH-80F-H	110	127	M80×2	43
φ <b>1</b> 40	LNH-72F-H	100	115	M72×2	38	LNH-56F-H	80	92.4	M56×2	30	LNH-95F-H	130	150	M95×2	47
φ <b>15</b> 0	LNH-76F-H	105	121	M76×2	40	LNH-60F-H	85	98.1	M60×2	33	LNH-95F-H	130	150	M95×2	47
φ <b>16</b> 0	LNH-80F-H	110	127	M80×2	43	LNH-64F-H	90	104	M64×2	35	LNH-100F-H	135	156	M100×2	50
φ <b>1</b> 80	LNH-95F-H	130	150	M95×2	47	LNH-72F-H	100	115	M72×2	38	-	-	_	_	-
φ <b>200</b>	LNH-100F-H	135	156	M100×2	50	LNH-80F-H	110	127	M80×2	43	-	-	-	_	-
φ224	LNH-120F-H	165	191	M120×2	60	LNH-95F-H	130	150	M95×2	47	-	_	_	_	_
φ <b>25</b> 0	LNH-130F-H	180	208	M130×2	65	LNH-100F-H	135	156	M100×2	50	-	_	_	-	-

Symbol		Dimension A	
Bore	Rod A	Rod B	Rod C
φ <b>3</b> 2	-	40	-
φ <b>4</b> 0	50	45	40
φ50	60	50	45
φ <b>6</b> 3	80	60	50
φ80	95	80	60
φ100	125	95	80
φ125	155	125	95
φ <b>1</b> 40	180	140	105
φ <b>15</b> 0	180	150	120
φ <b>16</b> 0	190	155	125
φ180	-	180	140
φ <b>2</b> 00	-	190	155
φ224	_	230	180
φ <b>25</b> 0	-	250	190

#### Easy ordering system

The following contents can be easily specified using the Semi-standard symbols and the (Position/Dimension/ Material) symbols.

							2	3 4				
How to order	Series name	Model nun	nber – X	The semi-s	tandard syn	nbols	Pos	ition/Dimen	sion/Materia	al symbols		
- Feer			1 The	Pos	ition	C	Dime	nsion	Mat	erial		
Easy	order contents		semi-standard symbols	2 Symbol	contents	3 Sym	bol	contents	④ Symbol	contents		
Tie rods extensior	ו א			TD-RS	Head cap side							
Note1) Tolerance of E	3B dimension	┍╼╋╾┼ ┟╶╶──╊═╡	STD	TD-HS	End cap side	ВВ- 🗌		Maximum BB for semi-standard is	—	—		
rod's stretch.	ely due to tie			TD-BS	Both sides			70mm.				
It should be c dimension neu 2) LB, LC Only 2 can be extend Only one side bracket can b	onsulted us in case cessary. 2, end side and upp ded. Flange, Clevis s' 4 tie rods without e extended.	of precise BB er, tie rods mounting mounting	ex.	In case of to be 50mr 70H-8R 2S	selecting SD n. SD80BB100-/	o mounti ABAH2-	ing a X S1	nd tie rods e	extension on B-50	both sides		
Hard chrome plated (Only for carbon sto	d on inside of cyli eel tube)	nder tubing	STB	_		BG-0.	.02	Thickness of chrome plating 0.02mm				
Note) Consult us for a thickness of chiplating except (	ny special rome 0.02mm.		ex.	70H-8 2LB	80BB100-AE	3-X STB	BG	0.02				
Stainless steel roo	J (bore:40mm to	100mm)	SPR						PR-10	Material:SUS304 Thickness of chrome plating 0.02mm		
Note) Consult us for an SUS304 or 0.02	iy special requirment mm thickness of chrc	except material	ex.	70H-8R 2LB80BB100		ABAH2-2	X SF	R PR-10				
Rod end attachme	ents (T,Y,S) with	a set screw	MDC									
thr	readed hole	, 1001111)		No need to	specify Pos	ition/Din	nens	ion/Material	symbols.			
Rod end for attachments 	Copper piece	Set thread	ex.	Occasion) In orc 70H Reference) M After fine adj attachment u ★Validity of th coated with Please be s trouble.	er to receive the cy I-8R 2CB80E Vithout the order ustment, please to sing a copper pie ne way to fix the a adhesive might r ure to fasten it to	linder and the BB100-A are of MD0 are of MD0 are sure to be sure to be attachment avoid the avoid the avoid the be mult avoid the be mult avoid the be sure to be sure to be mult avoid the be sure to	he rod ( ABAH C, the fix the screw. t tirole.	end attachment sep 12-T-X MDC attachment is Reference) V attachment is drilled	fixed as below Vithout the orde s fixed as below Set thread (wi Nole	porary assembly) at shipment. or of MDC, the at shipment. ith dog point)		
Changing the loca needle on the end	Ition of the port a	and cushion	PPC	PC-	Port/Cushion needle location on end cap side		-					
C C	Cushion valve		ex.	Phase cha 70H-8 2LA	nged Port/Cu 80BB100-AE	ushion n 3-X PPC	eedl PC	e on both sid -BC	des.			
Water-glycol work Note1) Carbon steel tu inside and the 2) Stainless stee	Valve Nater-glycol working fluid Iote1) Carbon steel tubing has hard chrome plated on inside and the water-glycol fluid is used for testin 2) Steinless steel tubing has no chroem plated		FWF	_			-		WF-WG	WF-WG: Water-glycol working fluid		
and the water	-glycol fluid is used	for testing.	ex.	70H-8 6LB	80BB100-AE	3-X FWF	F WF	-WG				
Trunion location change (PH dimension)			МТС	ΓC — TCPH- Should be specified by the integral number.								
	ex.	In case of 360mm PH dimension3X.70H-8R 2TC63BB500-AB-X MTC TCPH-360										
Intermidiate flange	ocation change (P	N dimension) ⊒─ <del>──</del> ₽	MFK		_	FKPN	-	specified by the integral number.				
		- - <b>@ </b> - = <b>₽</b>	ex.	In case of 140H-8 2F	1100mm PN K80BB1800-	dimens AB-X M	ion IFK F					

	1) The	Posi	tion		Din	nens	ion			N	lateri	al		
Special order contents	semi-standard symbols	2 Symbol	contents	3 S	ymbo	ol (	conte	ents	<b>4</b> S	ymbo	ol (	conte	nts	
Additional bushing				RC	-1.00	)	Rc1	/8						
				RC	-2.00	)	Rc1	/4						
				RC	-3.00	)	Rc3	/8						
Reducer Please specify this size	DDC			RC	-4.00	)	Rc1	/2					_	
	FDS			RC	-6.00	)	Rc3	/4						
				RC	-8.00	)	Rc	1						
				RC	-10.0	0	Rc1	1/4						
				RC	-12.0	0	Rc1	1/2						
Note1) Please specify the reduced port size as dimensional data.		140H-8, CA	a mounting,	bore:	80m	m (S	tanda	ard po	ort:Ro	c3/4)	is go	oint to	be	
Note2) Only one or two steps reducing can be specified	ex.	Rc1/2 port.	(one step re	ducir	ng)									
us.		140H-8 2C	A80BB300-A	B-X	PBS	RC-4	4.00							
Rc port size below standard	1) The	Only dimensional	Invariant of 2 constraints       1				ize and c	ptional p	oort size(	©:Sta	ndard po	ort size)		
(bore:32mm to 160mm)	semi-standard symbols	③ Symbol	contents	32	40	50	63	80	100	125	140	150	160	
★ In case of port size below standard necessary without reducer		RC-1.00	Rc1/8	0	0	×	×	×	×	×	×	×	×	
. Specify any port size		RC-2.00	Rc1/4	0	0	0	0	×	×	×	×	×	×	
as you need.		RC-3.00	Rc3/8	O	0	0	0	0	0	×	×	×	×	
₩ <u>+</u> ₩ ➡ 1 ; 1	PRT	RC-4.00	Rc1/2	×	×	0	0	0	0	0	0	0	0	
You can't use this symbol at : ● all A rod variations		RC-6.00	Rc3/4	×	×	×	×	0	0	0	0	0	0	
<ul> <li>B, C rod with LA mounting</li> </ul>		RC-8.00	Rc1	×	×	×	×	×	×	0	0	0	0	
		RC-10.00	Rc1 1/4	×	×	×	×	×	×	×	×	×	×	
		bore:63mm	(standard p	ort R	c1/2	). wit	hout	bush	ina is	s aoir	nt to I	be Ro	:3/8	
Note) Consult up for any over size part passager, for	ex.	port.												
check dimensions.		70H-8R 2CA80BB100-ABAH2-X PRT RC-3.00												
Cover port size reducing (for NPT)		Only dimensional data is required. Counter-chart of cylinder bore size and optional port size( : Standard port size)												
(bore:32mm to 160mm)	semi-standard	③ Symbol	contents	32	40	50	63	80	100	125	140	150	160	
Note) Optional port size range is common	symbols	N-1 00	NPT1/8	0	0	X	x	x	×	X	×	X	X	
to the Rc port.		N-2.00	NPT1/4	0	0	$\bigcirc$	$\bigcirc$	×	×	×	×	×	×	
Specify any port size		N-3.00	NPT3/8	0	0	0	0	$\overline{0}$	$\overline{\mathbf{O}}$	×	×	×	×	
as you need.	PTN	N-4.00	NPT1/2	×	×	0	0	$\overline{0}$	$\overline{0}$	0	0	$\overline{0}$		
		N-6.00	NPT3/4	×	×	×	×	0	0	0	0	0	0	
You can't use this symbol at :      all A rod variations		N-8.00	NPT1	×	×	×	×	×	×	0	0	0	0	
		N-10.00	NPT1 1/4	×	×	×	×	×	×	×	x	×	X	
	Note	The way to	order the sta	ndaro	l port	size	(⊚)i	s sho	wed i	in the	artic	le bel	ow.	
					1 -		(0)						-	
	bore:50mm (standard port NPT1/2) is going to be NPT3/8 port.													
	ex. bore:50mm (standard port NPT1/2) is going to be NPT3/8 port. 70H-8 2CB50BB100-NAB-X PTN N-3.00													
Note) Consult us for any over size port necessary for check dimensions.	sary for													
G / NPT port (bore:32mm to 160mm)	Sto	ndard size G	or NPT can	he o	acily	ordo	red a	as he						
(Only for standard size G or NPT )				000	aony Ti	Jue		13 00						
	ex.)	) 70H-8 2LA5	0088100- G	<u>A B</u> -	IL									
	ex.) 70H-8 2LA50BB100- G A B - IL G:G screw piping port type N:NPT screw type													
	<u>G:G scr</u> Port r	ew piping port type N	I:NPT screw type											
	<u>G:G scr</u> Port p Locat	ew piping port type N position ion of cushion	I:NPT screw type											

#### Special specification at the rod end

You can easily order following categolized items using the Semi-standard symbols and dimensional parameters. (No need to specify dimensional parameters if you would apply the basic dimensions.)



### Special rod end shape type (rod C)



#### **Basic dimensional table (standard dimensions)**

				-			
Bore	A	КМ	КР	*MM	*R	*S	w
<i>φ</i> 40	25	M16	1.5	<i>ф</i> 18	1	14	30
<i>φ</i> 50	30	M20	1.5	<i>ø</i> 22.4	1	19	30
<i>\</i> 63	35	M24	1.5	<i>ф</i> 28	1	24	35
<i>\phi</i> 80	45	M30	1.5	<i>ø</i> 35.5	1.6	30	35
<i>ϕ</i> 100	60	M39	1.5	<i>φ</i> 45	1.6	41	40
<i>ф</i> 125	75	M48	1.5	<i>ø</i> 56	1.6	50	45
<i>ϕ</i> 140	80	M56	2	<i>ø</i> 63	2	55	50
<i>ф</i> 150	85	M60	2	<i>φ</i> 67	2	60	50
<i>ф</i> 160	95	M64	2	<i>φ</i> 71	2	65	55
<i>ф</i> 180	110	M72	2	<i>ø</i> 80	2	75	55
<i>ф</i> 200	120	M80	2	<i>φ</i> 90	2	85	55
<i>ф</i> 224	140	M95	2	<i>ϕ</i> 100	2	Drill	60
<i>ф</i> 250	150	M100	2	<i>ф</i> 112	2	hole	65



KP (pitch) × 2

В	ore	*MM	w
¢	40	φ <b>1</b> 8	30
¢	50	φ22.4	30
¢	63	ф <b>2</b> 8	35
¢	80	φ <b>35.5</b>	35
φ1	00	φ <b>4</b> 5	40
φ1	25	φ56	45
φ1	40	<b>φ63</b>	50
φ1	50	<b>φ67</b>	50
φ1	60	φ71	55
φ1	80	<b>φ80</b>	55
φ2	200	φ90	55
φ2	24	φ <b>1</b> 00	60
ტ2	50	<b>φ112</b>	65

2.5 or more

A51

You are requested to consult us if you would like to change fixed dimensions.

A81

KM×KP

*øMΜ

Width across

flats **#S** 

15

W

<u>3</u>



#### **Basic dimensional table**

Bore	Α	DN	KM	KP	L	*MM	<b>∦R</b>	*S	w
φ40	25	2	M16	1.5	0	φ18	1	14	30
φ <b>5</b> 0	30	2	M20	1.5	0	¢22.4	1	19	30
φ <b>6</b> 3	35	2	M24	1.5	0	φ28	1	24	35
φ80	45	2	M30	1.5	0	¢35.5	1.6	30	35
φ <b>1</b> 00	60	2	M39	1.5	0	φ <b>4</b> 5	1.6	41	40
φ125	75	2	M48	1.5	0	φ <b>5</b> 6	1.6	50	45
φ <b>1</b> 40	80	2	M56	2	0	<b>φ63</b>	2	55	50
<i>ф</i> 150	85	2	M60	2	0	φ <b>6</b> 7	2	60	50
φ <b>16</b> 0	95	2	M64	2	0	φ71	2	65	55

Use this type when the width across flats S of the A00 are required to be moved.

Number of

chamfering DN





70/1<u>40H-8</u>

#### **Basic dimensional table**

Bore	A	*A1	DN	КМ	KP	L	*MM	*S	w
φ <b>3</b> 2	25	4	2	M16	1.5	0	φ18	14	30
φ40	30	4	2	M20	1.5	0	φ22.4	19	30
φ50	35	4	2	M24	1.5	0	φ28	24	30
ф <b>6</b> З	45	4	2	M30	1.5	0	φ35.5	30	35
φ80	60	4	2	M39	1.5	0	φ <b>4</b> 5	41	35
φ100	75	4	2	M48	1.5	0	φ <b>5</b> 6	50	40
φ125	95	5	2	M64	2	0	φ71	65	45
φ140	110	5	2	M72	2	0	φ80	75	50
φ <b>1</b> 50	115	5	2	M76	2	0	φ <b>8</b> 5	80	50
φ <b>16</b> 0	120	5	2	M80	2	0	φ90	85	55
φ180	140	5		M95	2		φ100		55
φ200	150	5	Drill	M100	2	Drill	φ112	Drill	55
φ224	180	5	hole	M120	2	hole	φ125	hole	60
φ <b>25</b> 0	195	5		M130	2		φ140		65
	<b>T</b> 1					e	DNL	0 /	

Note) • The possible number of chamfering DN is 2 (standard) or 4 only.

#### **Basic dimensional table**

Bore	А	DN	КМ	КР	L	*MM	*S	w
<i>φ</i> 40	15	2	M12	1.75	0	<i>ф</i> 18	14	30
<i>φ</i> 50	20	2	M16	2	0	<i>ф</i> 22.4	19	30
<i>ø</i> 63	24	2	M20	2.5	0	<i>ø</i> 28	24	35
<i>\</i> \$80	33	2	M27	3	0	<i>\$</i> 35.5	30	35
<i>ф</i> 100	36	2	M30	3.5	0	<i>ϕ</i> 45	41	40
<i>ф</i> 125	45	2	M39	4	0	<i>ø</i> 56	50	45
<i>ф</i> 140	54	2	M45	2	0	<i>ф</i> 63	55	50
<i>ф</i> 150	54	2	M45	2	0	<i>ø</i> 67	60	50
<i>ф</i> 160	58	2	M48	2	0	<i>φ</i> 71	65	55

This type of shape is applicable to only the 7 MPa type. For the 14 MPa type, contact us.

Note) • The possible number of chamfering DN is 2 (standard) or 4 only.

#### • Dimensions indicated by ***** Mark are fixed as our semi-standard.

You are requested to consult us if you would like to change fixed dimensions.

#### Unit: mm

### Special rod end shape type (rod B)

70/140H-8

A00

97





#### Basic dimensional table (standard dimensions)

Bore	А	КМ	KP	*MM	*R	*S	w
¢32	25	M16	1.5	φ18	1	14	30
φ40	30	M20	1.5	φ22.4	1	19	30
φ50	35	M24	1.5	φ <b>2</b> 8	1	24	30
φ <b>6</b> 3	45	M30	1.5	φ35.5	1.6	30	35
φ80	60	M39	1.5	φ <b>4</b> 5	1.6	41	35
φ <b>1</b> 00	75	M48	1.5	φ <b>5</b> 6	1.6	50	40
φ125	95	M64	2	φ71	2	65	45
φ <b>1</b> 40	110	M72	2	φ <b>8</b> 0	2	75	50
φ <b>15</b> 0	115	M76	2	φ <b>8</b> 5	2	80	50
φ <b>16</b> 0	120	M80	2	φ <b>9</b> 0	2	85	55
φ <b>1</b> 80	140	M95	2	φ100	2		55
φ <b>2</b> 00	150	M100	2	φ112	2	Drill	55
φ224	180	M120	2	φ125	2	hole	60
φ <b>25</b> 0	195	M130	2	φ140	2		65

#### **Basic dimensional table**

A51

Bore	*MM	w
<b>ф</b> 32	φ18	30
<i>φ</i> 40	φ22.4	30
φ50	φ <b>2</b> 8	30
φ <b>6</b> 3	ф <b>35.5</b>	35
φ80	φ <b>4</b> 5	35
φ100	φ56	40
φ125	φ71	45
φ <b>1</b> 40	φ80	50
φ <b>15</b> 0	<b>φ85</b>	50
φ <b>16</b> 0	φ90	55
φ <b>1</b> 80	φ100	55
φ200	φ112	55
φ224	φ125	60
φ <b>2</b> 50	φ <b>1</b> 40	65

Note) • The possible number of chamfering DN is 2 (standard) or 4 only.

#### A53



Basic	: dim	nens	iona	l tab	le				
Bore	A	DN	КМ	KP	L	*MM	<b>∦R</b>	*S	w
¢32	25	2	M16	1.5	0	φ18	1	14	30
φ <b>4</b> 0	30	2	M20	1.5	0	φ22.4	1	19	30
φ50	35	2	M24	1.5	0	φ28	1	24	30
φ <b>6</b> 3	45	2	M30	1.5	0	φ <b>35.5</b>	1.6	30	35
φ <b>80</b>	60	2	M39	1.5	0	φ <b>4</b> 5	1.6	41	35
φ100	75	2	M48	1.5	0	φ <b>5</b> 6	1.6	50	40
φ125	95	2	M64	2	0	φ71	2	65	45
φ140	110	2	M72	2	0	φ80	2	75	50
φ <b>15</b> 0	115	2	M76	2	0	φ <b>8</b> 5	2	80	50
φ <b>16</b> 0	120	2	M80	2	0	φ90	2	85	55

Use this type when the width across flats S of the A00 are required to be moved.

- $\bullet$  Dimensions indicated by  $\ensuremath{\#}$  Mark are fixed as our semi-standard.
- You are requested to consult us if you would like to change fixed dimensions.

#### Unit: mm



#### **Basic dimensional table**

Bore	Α	*A1	DN	км	KP	L	*MM	*S	w
φ <b>32</b>	25	4	2	M16	1.5	0	φ18	14	30
φ <b>4</b> 0	30	4	2	M20	1.5	0	φ22.4	19	30
φ50	35	4	2	M24	1.5	0	φ28	24	30
φ <b>6</b> 3	45	4	2	M30	1.5	0	φ35.5	30	35
φ80	60	4	2	M39	1.5	0	φ <b>4</b> 5	41	35
φ100	75	4	2	M48	1.5	0	φ56	50	40
φ <b>1</b> 25	95	5	2	M64	2	0	φ71	65	45
φ <b>1</b> 40	110	5	2	M72	2	0	φ80	75	50
φ <b>1</b> 50	115	5	2	M76	2	0	<b>φ85</b>	80	50
φ <b>1</b> 60	120	5	2	M80	2	0	φ90	85	55
φ <b>1</b> 80	140	5		M95	2		φ100		55
φ <b>2</b> 00	150	5	Drill	M100	2	Drill	φ112	Drill	55
φ224	180	5	hole	M120	2	hole	φ125	hole	60
φ <b>25</b> 0	195	5		M130	2		φ <b>1</b> 40		65

Note) • The possible number of chamfering DN is 2 (standard) or 4 only.



#### **Basic dimensional table**

Bore	A	DN	KM	KP	L	*MM	*S	w
<i>ø</i> 32	15	2	M12	1.75	0	<i>ф</i> 18	14	30
<i>φ</i> 40	20	2	M16	2	0	<i>¢</i> 22.4	19	30
$\phi 50$	24	2	M20	2.5	0	<i>ф</i> 28	24	30
<i>\</i> \$63	33	2	M27	3	0	<i>\$</i> 35.5	30	35
<i>\</i> \$80	36	2	M30	3.5	0	<i>φ</i> 45	41	35
<i>ф</i> 100	45	2	M39	4	0	<i>ø</i> 56	50	40
<i>ф</i> 125	58	2	M48	2	0	<i>φ</i> 71	65	45
<i>ф</i> 140		2			0	<i>ø</i> 80	75	50
<i>ф</i> 150		2			0	<i>ø</i> 85	80	50
<i>ф</i> 160		2			0	<i>φ</i> 90	85	55

For the products of a bore from  $\phi$ 140 to  $\phi$ 160, basic dimensions have not been specified. When ordering them, fill the blank areas in the table above.





70/140H-8

### **Basic dimensional table**

Bore	A	AA	A1	DN	КМ	KP	L	*MM	<b>∦R</b>	<b>∦S</b>	w
φ50	44	30	14	2	M20	1.5	0	¢28	1.6	24	30
φ <b>6</b> 3	49	35	14	2	M24	1.5	0	¢35.5	2	30	35
φ80	59	45	14	2	M30	1.5	0	φ <b>4</b> 5	2	41	35
φ <b>1</b> 00	74	60	14	2	M39	1.5	0	φ <b>5</b> 6	2	50	40
φ125	89	75	14	2	M48	1.5	0	φ71	2.5	65	45
φ <b>1</b> 40	100	80	20	2	M56	2	0	<b>φ80</b>	2.5	75	50
φ <b>15</b> 0	105	85	20	2	M60	2	0	φ <b>8</b> 5	2.5	80	50
φ <b>16</b> 0	115	95	20	2	M64	2	0	φ <b>9</b> 0	2.5	85	55

For the products of a bore of \$32 and \$40, basic dimensions have not been specified.

Contact us when you request for them.

When modifying the dimension A1, specify the number of 10 or more.

Specify the dimensions AA and A1 at the same time.



#### **Basic dimensional table**

Bore	米 A1+0.5 +0.3	業 A2 ^{_0.2}	* DM	米 DP ^{-0.2}	* DR	* MM	* N	* V	W
<i>ø</i> 32	12.5	12.5	<i>ф</i> 18	<i>ø</i> 13	1.0	<i>ф</i> 18	3	C0.2	30
<i>φ</i> 40	12.5	12.5	<i>ø</i> 22.4	<i>ø</i> 16	1.5	<i>ø</i> 22.4	3	C0.2	30
$\phi 50$	12.5	12.5	<i>ф</i> 28	<i>ф</i> 21	1.5	<i>ф</i> 28	3	C0.2	30
<i></i> \$63	15	15	<i>\$</i> 35.5	<i>ø</i> 26	2.0	<i>\$</i> 35.5	3	C0.2	35
<i>\phi</i> 80	15	15	<i>φ</i> 45	<i>ø</i> 31	2.0	<i>φ</i> 45	3	C0.2	35
<i>φ</i> 100	20	20	<i>ϕ</i> 56	<i>ø</i> 38	3.0	<i>ϕ</i> 56	3	C0.2	40
<i>ф</i> 125	25	25	<i>φ</i> 71	<i>φ</i> 49	3.5	<i>φ</i> 71	3	R1	45
<i>ф</i> 140	25	25	<i>ø</i> 80	<i>ø</i> 56	4.0	<i>ø</i> 80	3	R1	50
<i>ф</i> 150	30	30	<i>ø</i> 85	<i>ø</i> 58	5.0	<i></i> \$85	6	R1	50
<i>ф</i> 160	30	30	<i>φ</i> 90	<i>\\$</i> 60	5.0	<i>φ</i> 90	6	R1	55

MM is rod dia.

98

• Dimensions indicated by * Mark are fixed as our semi-standard. You are requested to consult us if you would like to change fixed dimensions. Special rod end shape type (rod A)

A00



Basic dimensional table (standard dimensions)



Basic dimensional table

A51

Bore	A	КМ	КР	*MM	*R	*S	w
φ <b>4</b> 0	35	M24	1.5	¢28	1	24	35
φ50	45	M30	1.5	¢35.5	1.6	30	41
φ <b>6</b> 3	60	M39	1.5	φ <b>4</b> 5	1.6	41	48
φ <b>8</b> 0	75	M48	1.5	φ <b>5</b> 6	1.6	50	51
φ <b>1</b> 00	95	M64	2	φ71	2	65	57
φ125	120	M80	2	φ <b>9</b> 0	2	85	57
φ <b>1</b> 40	140	M95	2	φ100	2		57
φ <b>15</b> 0	140	M95	2	φ100	2	Drill hole	57
φ <b>16</b> 0	150	M100	2	φ112	2		57

Bore	*MM	w
φ <b>4</b> 0	φ <b>2</b> 8	35
φ50	φ <b>35.5</b>	41
φ <b>6</b> 3	φ <b>4</b> 5	48
φ80	φ56	51
φ100	φ71	57
φ125	φ90	57
φ <b>140</b>	φ <b>1</b> 00	57
φ <b>15</b> 0	φ <b>1</b> 00	57
φ <b>16</b> 0	φ112	57

### A53





### Basic dimensional table

Bore	A	DN	КМ	КР	L	*MM	<b>∦R</b>	*S	w
φ40	35	2	M24	1.5	0	φ28	1	24	35
φ50	45	2	M30	1.5	0	φ <b>35.5</b>	1.6	30	41
<b>ф63</b>	60	2	M39	1.5	0	φ <b>4</b> 5	1.6	41	48
φ80	75	2	M48	1.5	0	φ <b>5</b> 6	1.6	50	51
φ <b>1</b> 00	95	2	M64	2	0	φ71	2	65	57
φ125	120	2	M80	2	0	φ90	2	85	57

Use this type when the width across flats S of the A00 are required to be moved.

#### A54





#### **Basic dimensional table**

Bore	Α	*A1	DN	KM	KP	L	*MM	*S	w
<i>φ</i> 40	35	4	2	M24	1.5	0	<i>ø</i> 28	24	35
<i>φ</i> 50	45	4	2	M30	1.5	0	<i>\$</i> 35.5	30	41
<i>\</i> 63	60	4	2	M39	1.5	0	<i>φ</i> 45	41	48
<i>\phi</i> 80	75	4	2	M48	1.5	0	<i>φ</i> 56	50	51
<i>φ</i> 100	95	5	2	M64	2	0	<i>φ</i> 71	65	57
<i>ф</i> 125	120	5	2	M80	2	0	<i>φ</i> 90	85	57
<i>ф</i> 140	140	5	Drill hole	M95	2	Drill hole	<i>ϕ</i> 100		57
<i>ф</i> 150	140	5	$\uparrow$	M95	2	$\uparrow$	<i>ϕ</i> 100	Drill hole	57
<i>ф</i> 160	150	5	$\uparrow$	M100	2	$\uparrow$	<i>ф</i> 112		57

 $\bullet$  Dimensions indicated by  $\ensuremath{\#}$  Mark are fixed as our semi-standard.

• You are requested to consult us if you would like to change fixed dimensions.

# 70/140H-8¹

#### A55



#### **Basic dimensional table**

Bore	A	AA	A1	DN	КМ	KP	L	*MM	<b>∦</b> R	*S	w
φ40	44	30	14	2	M20	1.5	0	¢28	1.6	24	35
φ50	49	35	14	2	M24	1.5	0	¢35.5	2	30	41
φ <b>6</b> 3	59	45	14	2	M30	1.5	0	ф <b>4</b> 5	2	41	48
φ80	74	60	14	2	M39	1.5	0	ф <b>5</b> 6	2	50	51
φ100	89	75	14	2	M48	1.5	0	φ71	2.5	65	57
φ125	115	95	20	2	M64	2	0	φ <b>9</b> 0	2.5	85	57

When modifying the dimension A1, specify the number of 10 or more.

Specify the dimensions AA and A1 at the same time.

#### A82

*Exclusive M joint on the following pages



#### A81



#### **Basic dimensional table**

Bore	А	DN	КМ	KP	L	*MM	*S	w
<i>φ</i> 40	24	2	M20	2.5	0	<i>ø</i> 28	24	35
<i>φ</i> 50	33	2	M27	3	0	<i>\$</i> 35.5	30	41
<i>\</i> 63	36	2	M30	3.5	0	<i>φ</i> 45	41	48
<i>\phi</i> 80	45	2	M39	4	0	<i>φ</i> 56	50	51
<i>φ</i> 100	58	2	M48	2	0	<i>φ</i> 71	65	57

Note) • The possible number of chamfering DN is 2 (standard) or 4 only.

#### **Basic dimensional table**

Bore	米 A1 ^{+0.5}	₩ <b>A2</b> _0.3	* DM	米 DP ^{_0.2}	* DR	* MM	* N	* V	w
<i>φ</i> 40	12.5	12.5	<i>ф</i> 28	<i>ф</i> 21	1.5	<i>ø</i> 28	3	C0.2	35
$\phi 50$	15	15	<i>\$</i> 35.5	<i>ø</i> 26	2.0	<i>\$</i> 35.5	3	C0.2	41
<i>ϕ</i> 63	15	15	<i>φ</i> 45	<i>ø</i> 31	2.0	<i>φ</i> 45	3	C0.2	48
<i>\</i> \$80	20	20	<i>φ</i> 56	<i>ø</i> 38	3.0	<i>\$</i> 56	3	C0.2	51
<i>φ</i> 100	25	25	<i>φ</i> 71	<i>φ</i> 49	3.5	<i>ф</i> 71	3	R1	57
<i>ф</i> 125	30	30	<i>φ</i> 90	<i>φ</i> 60	5.0	<i>ф</i> 90	6	R1	57

MM is rod dia.

100

• Dimensions indicated by * Mark are fixed as our semi-standard.

• You are requested to consult us if you would like to change fixed dimensions.

Unit: mm

#### Separate flange joint : Only for A82 rod end style



• Need additional order for this item. Part No. : RMH-(bore(mm))

#### Dimensional table (rod B)

Symbol Bore	Part code	A	В	С	D1	D2	D3	D4	E	F	G	Н	J	х
<i>ø</i> 32	RMH-18	<i>ф</i> 49	23	1	$\phi$ 19	<i>ф</i> 13.5	<i>¢</i> 6.6	<i>ф</i> 11	18.5	25	12.5	6.5	<i>ø</i> 34	-
<i>φ</i> 40	RMH-22	<i>ф</i> 57	27	1.5	<i>ф</i> 23	<i>ф</i> 16.5	<i>φ</i> 9	<i>ф</i> 14	16.4	25	12.5	8.6	<i>ϕ</i> 40	-
$\phi 50$	RMH-28	<i>ф</i> 71	34	1.5	<i>ф</i> 29	<i>ф</i> 21.5	<i>ф</i> 11	<i>ф</i> 17.5	14.2	25	12.5	10.8	<i>φ</i> 50	-
<i>\</i> \$63	RMH-36	<i>φ</i> 77	37	2	<i>ø</i> 38	<i>ф</i> 27	<i>ф</i> 11	<i>ф</i> 17.5	19.2	30	15	10.8	<i>φ</i> 55	-
<i>\</i> \$80	RMH-45	<i>ф</i> 100	48.5	2	<i></i> \$48	<i>ø</i> 33	<i>ф</i> 14	<i>ф</i> 20	17	30	15	13	<i>φ</i> 76	16
<i>φ</i> 100	RMH-56	<i>ф</i> 124	60.5	3	$\phi 60$	<i>φ</i> 41	<i>ф</i> 18	<i>ф</i> 26	22.5	40	20	17.5	<i>φ</i> 92	7
<i>ф</i> 125	RMH-70	<i>ф</i> 150	73.5	3.5	φ74	<i>φ</i> 53	<i>ф</i> 22	<i>ø</i> 32	28.5	50	25	21.5	<i>ф</i> 112	14
<i>ф</i> 140	RMH-80	<i>ф</i> 174	85.5	4	<i></i> ø84	<i>φ</i> 60	<i>ф</i> 26	<i>ø</i> 39	24.5	50	25	25.5	<i>ф</i> 129	40
<i>φ</i> 150	RMH-85	<i>ф</i> 180	88.5	5	$\phi$ 90	<i>ф</i> 62	<i>ф</i> 26	<i>ø</i> 39	34.5	60	30	25.5	<i>ф</i> 135	26
<i>ф</i> 160	RMH-90	<i>ф</i> 193	95	5	$\phi 95$	<i>ф</i> 64	<i>ø</i> 30	<i>φ</i> 43	31	60	30	29	<i>ф</i> 144	9

Note) For LC mounting and B rod at A82 rod end, please add X dimension as minimum in order to avoid the interference.

#### Dimensional table (rod A)

Symbol Bore	Part code	A	В	с	D1	D2	D3	D4	E	F	G	н	J	Y
<i>φ</i> 40	RMH-28	<i>ф</i> 71	34	1.5	<i>ф</i> 29	<i>ф</i> 21.5	<i>ф</i> 11	<i>ф</i> 17.5	14.2	25	12.5	10.8	<i>φ</i> 50	15
$\phi 50$	RMH-36	φ77	37	2	<i>ø</i> 38	φ27	<i>ф</i> 11	<i>ф</i> 17.5	19.2	30	15	10.8	<i>φ</i> 55	-
<i>\</i> 63	RMH-45	<i>ф</i> 100	48.5	2	<i>ф</i> 48	<i>ø</i> 33	<i>ф</i> 14	<i>ф</i> 20	17	30	15	13	<i>φ</i> 76	17
<i>\phi</i> 80	RMH-56	<i>ф</i> 124	60.5	3	$\phi 60$	<i>ϕ</i> 41	<i>ф</i> 18	<i>ф</i> 26	22.5	40	20	17.5	<i>φ</i> 92	24
<i>ф</i> 100	RMH-70	<i>ф</i> 150	73.5	3.5	<i>φ</i> 74	<i>φ</i> 53	<i>ф</i> 22	<i>ø</i> 32	28.5	50	25	21.5	<i>ф</i> 112	26
<i>ф</i> 125	RMH-90	<i>ф</i> 193	95	5	<i></i> \$95	<i>ø</i> 64	<i>ø</i> 30	<i>ø</i> 43	31	60	30	29	<i>ф</i> 144	43

Note) For LB mounting and A rod at A82 rod end, please add Y dimension as minimum in order to avoid the interference.

#### Setting method of switch detecting position



#### Notes on assembly

#### Clamping of tie rod

• When clamping the tie rods, DO NOT clamp only one tie rod at once, but clamp them gradually in the order shown in the right diagram. The single clamping of the tie rod may cause malfunctions or cracks of cylinders.

#### Table of specified tie rod clamp torque

- 1. Loosen the two set screws with an allen wrench, and move them along with the tie rod.
- 2. Adjust the detecting position (for the 2-LED type, the position that the green lamp lights up) 2 to 5 mm (about half of the working range is appropriate) before the required position that the switch indicator lamp starts to light up (ON). Then, gently hold the top of the switch so that the cylinder tube contacts the detecting face of the switch, and clamp the set screw with the appropriate clamp torque.
  - Note) Inappropriate clamp torque may cause the offcenter of the switch position.
- 3. <u>The indicator lamp lights up when the switch is set to</u> <u>the ON position.</u>
- Switches can be mounted to any of four tie rods and on the most suitable position depending on the mounting space of the cylinder and wiring method.
- Mount a switch to the most suitable position to detect the stroke end with the "Switch mounting dimension" (dimension UX).



Bore mm		ф <b>3</b> 2	φ40 φ50		φ <b>6</b> 3	φ80	φ100	φ125
Tie rod screw		M10×1.25	M10×1.25 M10×1.25		M12×1.5	M16×1.5	M18×1.5	M22×1.5
Clamp torque	70H-8	44	44	44	35	87	130	240
N•m	140H-8	41	41	41	70	170	250	460
Bore r	nm	φ <b>1</b> 40	φ150	φ <b>16</b> 0	φ <b>1</b> 80	φ <b>2</b> 00	φ <b>22</b> 4	φ <b>2</b> 50
Tie rod s	screw	M24×1.5	M27×1.5	M27×1.5	M30×1.5	M33×1.5	M39×1.5	M42×1.5
Clamp torque	70H-8	310	450	450	630	830	1400	1800
N•m	140H-8	610 880		880	1100	1400	2400	3000

## 103

#### **Precautions for use**

Take sufficient care to prevent the pressure in the cylinder with the rod A from exceeding the maximum allowable pressure, since the cylinder has the smaller pressurized area on the rod side, and the pressure in it tends to increase easily.

#### < Example >

Find the pressure on the rod side when the cylinder is moved forward (lowered) under the conditions shown below.

Cylinder: 140H-8  $\phi$ 80 Rod ALoad: W = 1000 kg ( $\doteq$ 10000 N)Set pressure: PH = 8 MPaInstalling direction: Rod facing downwardSpeed control: Meter-out

The working speed is slow, and the load rate is 100%.

#### < Answer >

The pressure  $P_R$ , generated on the rod side is the sum of the pressure  $P_1$ , generated to balance with the load W and the pressure  $P_2$ , boosted by the supply from the head side.

• The pressure P₁, generated to balance with the load W, can be calculated with the formula below.

$$P_{1} = \frac{W}{A_{R}} = \frac{10000 \text{ (N)}}{2564 \text{ (mm}^{2})} = 3.9 \text{ (MPa)}$$

• The pressure P₂, boosted by the supply from the head side, can be calculated with the formula below. where, P₂A_R = P_HA_H

$$P_2 = \frac{P_H A_H}{A_R} = \frac{8 (MPa) \times 5027 (mm^2)}{2564 (mm^2)} = 15.7 (MPa)$$

• The pressure P_R, generated on the rod side, can be calculated with the formula below.

$$P_R = P_1 + P_2 = 3.9 + 15.7 = 19.6$$
 (MPa)

Therefore, the pressure in the cylinder exceeds the maximum allowable pressure of the 140H-8, rod A type, on the rod side, 18 MPa shown in the standard specifications, and the cylinder is not applicable. Modify the working conditions, and recalculate.





# **Switch specifications**



Switch selection materials ...... 109

Magnetic proximity type/with contact ... 116

Magnetic proximity type/with no contact ... 124

Magnetic proximity type/cutting fluid proof type ··· 136

Code for arrangement of switches ..... 142

#### Important precautions

**∧** Caution

#### • Supply voltage, current, load capacity

Avoid the voltage and current out of the specifications of the switches, and the load exceeding the contact open/close capacity. DO NOT apply AC voltage to the switches applicable to DC voltage. Application of wrong voltage or current may lead to malfunctions, breakage, or inflammable damages of the switches.

#### Shutdown of power supply

Prior to wiring and connection, be sure to shut down the power supply. Otherwise, the operator may get an electric shock.

#### • Wrong wiring

Perform wiring correctly according to the colors of lead wires.

If wiring is performed incorrectly, the inflammable damage or breakage of the switch will occur, even if the wrong wiring is momentary.



#### No load connection

DO NOT connect the switches direct to the power supply.

Be sure to connect them through load devices, such as relays and programmable controllers.

If the switches are connected direct to the power supply, the switches or load devices will be damaged or inflammable damages will occur, even if the connection is momentary.

#### Correct use (common to all switches)

#### 1. Selection

When selecting switches, be sure to follow the sequences in the "Switch selection materials".

#### 2. Working environmental conditions

- These products do not have explosion-protected structure. DO NOT use them in the places where dangerous materials, including firing and ignitable objects, are present.
- 2) Use the switches indoors only.
- 3) Use the switches within the temperature range shown in the specifications of the switches. In the case of a hydraulic cylinder, the temperature of oil in it may be increased depending on the working conditions. Provide countermeasures in a hydraulic circuit, or install an oil cooler.
- 4) Use the switches within the allowable range of vibrations and shocks shown in the specifications.
- 5) DO NOT use the switches in the atmosphere of chemicals.
- 6) DO NOT use the switches in the places where the cylinders or switches are subjected to chips, cutting oil, and water. Otherwise, cords may be damaged or the switches may be malfunctioned.

- 7) Strong magnetic field
  - Prior to the use of the switches near a strong magnetic field, install the magnetic shield with steel plates (install it 20 mm or more distant from the cylinders and switches).
  - Otherwise, the switches may work incorrectly due to the influence of the magnetic field.



- 8) Strong magnetic substance
  - Keep away strong magnetic substances (such as iron) from cylinders outside and switches. Separate them by approx. 20 mm or more (as a guide). For compact cylinders, separate them by approx. 10 mm or more (KR and ZR type switches, etc.).
  - Otherwise, the switches may work incorrectly due to the influence of the magnetic field.



Switch specifications

#### 3. Wiring

- Prior to wiring, be sure to shut down the power supply.
  - Otherwise, the operator may get an electric shock during working, or the switches or load devices may be damaged.
- Pay attention to avoid bending, pulling, twist of the switch cord. Especially, provide appropriate measures to avoid any load applied to the end of the switch cord, including the fixing of the switch cord to the tie rod.



- Otherwise, the cord may be damaged, causing broken wires. Especially, any load applied to the end of the cord may lead to the damaged electric circuit boards in the switches.
- When fixing the cord to the tie rod, do not clamp the cord excessively. Otherwise, the cord may be damaged, causing broken wires.
- 3) The larger bending radius (twice of the cord dia. or larger) is better for the cord.
  - Otherwise, the cord may be damaged, causing broken wires.
- 4) If the connection distance is long, fix the cord every 20 cm to avoid a sag in the cord.
- 5) When laying the cord on the floor, protect it by covering with metallic tubes.
  - Otherwise, the coating of the cord may be damaged, leading to the broken wires or short-circuit.
- The distance between the switches and load devices or power supply must be 10 m or shorter.
  - Otherwise, inrush current may occur to the switches during operation, causing the damaged switches. For the countermeasures against inrush current, refer to the "Precautions for contact protection".
- DO NOT bind the cord with high-voltage cables for other electric appliances, the power supply, nor with the power supply cord. NEVER perform wiring near these cables.
  - Otherwise, noises may enter the switch cord from the high-voltage cables and power source, or power supply cable, causing the malfunctions of the switches or load devices. It is recommended that the cord is protected with a shield tube.

#### 4. Mounting

1) Tighten the switch mounting screws with the specified clamp torque.

If the clamp torque exceeds the specified torque, the switch may be damaged.

If the clamp torque is smaller than the specified torque, the switch may be loosened.

2) Adjust the switch position until the switch detecting position is centered on the switch working range.

#### 5. Maintenance and inspection

For stable working of the switches for a long period, perform maintenance and inspection of the items shown below similarly to general electric appliances.

DO NOT disassemble the switches.

- Off-center of switch mounting position and looseness of mounting screws
- 2) Working statuses of indicator lamps and load devices
- Abnormalities in environmental conditions (vibrations, shocks, temperature, etc.)
- 4) Attachment of metallic dusts and chips
- 5) Presence of cutting oil and water
- 6) Abnormalities in wiring, wired parts, and cords.

#### 6. Storage

- Prior to storage, consider the storage temperature, and provide countermeasures against rusts, inferiority in cords, vibrations, and shocks.
- Store the switches in cool and dark (-10 25°C) places.

#### 7. Disposal

- DO NOT put them into fire. Otherwise, poisonous gas may be generated.
- 2) Dispose them as nonflammable wastes.

108
## General comparison of contact type with no contact type

Contact type Items	Contact	No contact
Reliability	Low, due to the mechanical contacts	High, due to the non-presence of the mechanical contacts
Number of working time (durability)	Several millions to ten millions times	Semi-eternal
Chattering	Yes	No
Responsibility	Slow	Fast
Vibration and shock resistance	Low	High
Difference	Large	Small
Number of lead wires	2	2 or 3
Price	Low	Expensive

# Switch terminologies

### Power supply voltage

The voltage to actuate the switch main circuit. (3-wire no contact type)

# Working voltage (load voltage)

The voltage applicable to switches. (For the 3-wire no contact type, the voltage applicable to the output part.)

# Working current (load current)

The current applicable to switches. (For the 3-wire no contact type, the current flowing in the output part.)

# **Consumption current**

The current flowing in the switch main circuit. (3-wire no contact type)

# Inner drop voltage

The voltage generated between the poles of a switch, + and –, (for the 3-wire no contact type, between the output and the GND) when a switch is set to the ON position. Thus, the voltage applied to load devices when the switch is set to the ON position decreases according to the inner drop voltage.

# Leakage current

The current flowing between the poles of a switch, + and –, (for the 3-wire no contact type, between the output and the GND) when a switch is set to the OFF position.

## Working time, return time

Working time: the time required for a switch to enter the ON status from the OFF status after a magnetic force reaches the level required for the switch to enter the ON status.

Return time: the time required for a switch to enter the OFF status from the ON status after a magnetic force reaches the level required for the switch to enter the OFF status.



# **Response time**

This term means both of the working time and return time. Since they are almost same in the case of the no contact type, this term is used for indicating both of them.

# Protective structure

# ■ IEC (International Electrotechnical Commission) standards (IEC529)

δ	Grades	Contents of pro	otection	Test methods
	4	Protection from splashes	No detrimental influ- ence occurs even if water is splashed from any direction.	Splash water from all the directions for 10 minutes.
	5	Protection from water injection	No detrimental influ- ence occurs even if water is injected direct from any direction.	Inject water from all the direc- tions for 15 minutes in total.
Grade of protection from ingress of water	6	Protection from strong water injection	No ingress of water oc- curs even if water is strongly injected direct from any direction.	Inject water from all the direc- tions for 15 minutes in total.
	7	Protection from a soak	No ingress of water oc- curs even if the object is soaked in water under the specified pressure and for the specified period.	Soak in 1 m from the water surface for 30 minutes.
	8	Protection from submer- gence	The object can be used with sub- merged.	Individually specified.
	Grades	Contents of pro	otection	
Grade of protection of human body and from solid foreign matters	6	Dusts proof type	No ingress of dusts occur.	
	L			

- (International Protection)

### ■ JEM (The Japan Electrical Manufacturers' Association) standards



### Types of switch indicator lamp

### 1) 1-LED type

a) Lights with switch ON

The indicator lamp lights up when the switch detects the piston position to indicate that the switch enters the ON status. While the piston position is not detected, the indicator lamp remains unlit to indicate that the switch is in the OFF status.

b) Lights with switch OFF

The indicator lamp becomes unlit when the switch detects the piston position to indicate that the switch enters the ON status. While the piston position is not detected, the indicator lamp remains lit to indicate that the switch is in the OFF status.

### 2) 2-LED type

The indicator lamp lights up when the switch detects the piston position to indicate that the switch enters the ON status. At that time, either of the red or green indicator lamps lights up according to the detected piston position. The range within which the green indicator lamp remains lit is called the best adjustment range.

When mounting a switch, adjust the mounting position so that the detecting position of the switch is centered on the best adjustment range.



### [1-LED type]







### [2-LED type]



- When mounting a switch, adjust the mounting position so that the detecting position of the switch is centered on the working range (for the 2-LED type, the center of the range within which the green indicator lamp remains lit).
- In case of the position detection at both ends of the cylinder stroke, mount the switch at the "Most suitable setting position of switch" (refer to the catalogue of each cylinder) to center the detecting position of the switch on the working range.
- Notes) For the max. sensitive position of each switch, refer to the dimensional drawings of each switch.
  - For the working range and difference of each switch, refer to the catalogue of the applicable cylinder.

# Descriptions of switch working

### 1) Magnetic proximity type working

The piston position is detected when the piston with a magnet equipped passes under the magnetic proximity switch mounted on the periphery of the tube. The cylinder stroke position can be externally detected without contact.



If the piston moves toward the  $\Rightarrow$  direction, the switch enters the ON status when the magnet reaches the position (A).

The ON status continues from when the magnet reaches the position B until it reaches the B. The period is called the working range.



If the piston is moved toward the  $\Rightarrow$  direction, the switch enters the ON status when it reaches the position (A). When the piston is moved in the reverse  $\Rightarrow$  direction, the ON status continues until it reaches the position (C).

The period required for moving between the A and C is called a difference.

It occurs at the both ends of the working range.

## Check of conditions when selecting switches

Items	Contents
1. Series of cylinder	The applicable shape of a switch differs depending on the cylinder series.
2. Type of load device	Small relay, programmable controller, small solenoid, etc.
3. Working voltage and working current of load device	Stationary voltage value, surge voltage value, stationary current value, inrush current value
4. Actuating voltage and actuating current, and return voltage and return current of load device	Check the adaptability of electrical specifications of a switch.
5. Working time of load device (ms)	The time when a load device is actuated after receiving the input from a switch
6. Cylinder working speed (mm/S)	Required for detection at the intermediate stroke.
7. Working frequency of switch (number of times/period)	The number of working times indicating durability of the contact type differs from that of the no contact type.
8. Control system	The sequence circuit of a switch against the motion of a cylinder. Especially, check for the connection in series and the connection in parallel.
9. Environmental conditions	Temperature, vibrations, shocks, splashing condition of cutting fluid and water, strength of neighboring magnetic field, presence of strong magnetic substance (iron and chips), presence of power source of other electric appliances (motor, etc.)

### Switch selection procedures

When selecting a switch, the items below need to be decided.



### 1) Working temperature

Use switches within the ambient temperature range described in the specifications of each switch. For hydraulic cylinders, oil temperature may be increased depending on the working conditions. Provide some countermeasures in the hydraulic circuit or install an air conditioner.

### 2) Criteria for selection in case that switches are splashed with cutting fluid or water

Conditions	Criteria for selection
When switches are splashed with cutting fluid or water always or frequently	Use the cutting fluid proof type switches (WR, WS types) even if cutting fluid or water is mist, or they are splashed only several times a day. However, in the case of the use of switches in the places where are splashed with nonaqueous cutting fluid of the type 2, contact us.
In cutting fluid or water	DO NOT use even if momentarily.

### 3) Other environmental conditions

The places where dangerous materials, including fir- ing and ignitable objects, are present The places where the atmosphere of chemicals, etc.	► □ DO NOT use under these conditions.
The places where are subjected to chips	
The places where strong magnetic fields are generated	Provide countermeasures referring to the recommended mounting
When strong magnetic substances (iron, etc.) approach switches or cylinder	locations specified in the handling instructions of the switches.
The places where are subjected to vibrations and shocks	$\ensuremath{\hookrightarrow}\xspace$ Refer to the vibration and shock resistance specifications of each switch.
The places where are subjected to direct sunlight (outdoor)	$\leftrightarrows$ Use only indoors. In the places where are subjected direct sunlight, provide covers.

# Detectable cylinder piston speed

- When mounting the switch on the intermediate position, be sure to adjust the maximum cylinder speed to 300 mm/s or slower on account of the response speed of the load relays, etc.
- If the piston speed is excessively high, the switch working time becomes shorter, although the switch works, and load devices including relays may not work.

Determine the detectable cylinder piston speed, referring to the formula below.

Detectable piston speed (mm/s) =  $\frac{\text{working range of switch (mm)}}{\text{working time of load device (ms)}} \times 1000$ 

- Notes) Refer to the materials related to the working time of load devices including relays of each manufacturer.
  - Apply the minimum value to the working range of a switch, and apply the maximum value to the working time of a load device.



# Switch specifications Magnetic Proximity Type/ With Contact



**AZ Type Switch** 





# **Specifications**

**AX** Type Switch

<u> </u>	With cord (1.5m)	A¥101	ΔΧ111		_	_
d)		AX405				 
po	With cord (5m)	AX105	AXIIS	-	-	AATZO
C	With connector (AC type)	-	-	AX11A	-	-
	With connector (DC type)	-	-	-	AX11B	-
Lo	ad voltage range	AC : 5 - 120V	DC : 5 - 30V	AC : 5 - 120V	DC : 5 - 30V	AC: 120 V or less DC: 30 V or less
Lo	ad current range	AC : 5 - 20mA	DC : 5 - 40mA	5 - 20mA	5 - 40mA	AC: 20 mA or less DC: 40 mA or less
Maximum open/ close capacity				AC : 2VA DC : 1.5W		
Inr	ner drop voltage		2V (at 10mA	) 3Vor less		0V
Cu	rrent leak	0μΑ		10μA or less		0μΑ
W	orking time			1ms or less		
Re	turn time			1ms or less		
Ins	ulation resistance		100 M $\Omega$ or more	re at 500 MV DC (between	case and cord)	
Voltage-proof AC1500V 1 min (between case and cord)						
Shock resistance 294m/s ² (Non-repetition)						
Vibration-proof Total amplitude 1.5mm, 10 - 55Hz (1 sweep, 1 min) 2 hours in X, Y, and Z directions			ns			
An	bient temperature		-10 -	+70°C (at non-freezing con	dition)	-10 - +100°C (at non-freezing condition)
Wi	ring method		0.3mm ² 2-core	Outer diameter 4mm Oil-p	roof cabtyre cord	
Pr	otective structure		IP67 (IEC standards)	, JIS C0920 (dusts-proof, ir	nmersion-proof type)	
Co	ntact protective circuit	Note) None		Equipped		Note) None
Inc	licating lamp		LED (red lamp lig	nts up during ON)		None
Ele	ectric circuit	Reed switch (Blue)	Reed switch	Protective circuit	e (Brown)	No polarity $\oplus, \bigcirc$ (Brown) Reed switch (Blue)
Applied load		Small relay • Programmable Controller IC circuit, small relay programmable controller controller				IC circuit, small relay, programmable controller

Notes) • When using induction load devices (small relay, etc.), be sure to provide the protective circuit (SK-100). • For the cord length and connector pin position of the connector type, refer to the dimensional drawings.

• When using the AC voltage input programmable controller as a load, select the switch with contact protective circuit.

### Applicable hydraulic cylinder

Series	Bore	Series	
35S-1R	\$\$\phi20, \$\$\phi25, \$\$\phi32, \$\$\phi40, \$\$\phi50, \$\$\phi63\$	100Z-1R	φ
HQS2R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$	100H-2R	φ
100S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$		φ
160S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80\$\$	70/140H-8R	φ
210S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80\$		φ
35Z-1R	<i>ϕ</i> 20, <i>ϕ</i> 25, <i>ϕ</i> 32	160H-1R	φ
35H-3R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$		φ

eries	Bore	Sei
Z-1R	<i>ϕ</i> 20, <i>ϕ</i> 25, <i>ϕ</i> 32	210C
1-2R	\$\$\phi\$32, \$\$\phi\$40, \$\$\phi\$50, \$\$\phi\$63, \$\$\phi\$80,	70/140
	φ100, φ125	
10H-8R	\$\$\phi\$32, \$\$\phi\$40, \$\$\phi\$50, \$\$\phi\$63, \$\$\phi\$80,	35P-3
	φ100, φ125, φ140	
-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80,\$\$\$\$	70/14
	φ100, φ125, φ140, φ160	

Series	Bore
210C-1R	\$\$\phi40, \$\$\phi50, \$\$\phi63, \$\$\phi80\$
70/140Y-2R	\$\$\phi\$32, \$\phi\$40, \$\phi\$50, \$\phi\$63, \$\phi\$80,
	φ100, φ125
35P-3R	\$\$\phi\$32, \$\phi\$40, \$\phi\$50, \$\phi\$63, \$\phi\$80,
	<i>ф</i> 100
70/140P-8R	\$\$\phi\$32, \$\phi\$40, \$\phi\$50, \$\phi\$63, \$\phi\$80,
	<i>ф</i> 100

**Dimensional Drawing** 





### AX11A (AC type)





AX11B (DC type)

#### Connector pin position



# Applicable counter connectors

Manufacturers	Connector series name				
Correns Co., Ltd.	VA connector	VA-4DS, VA-4DL			
Omron Corporation	XS2 sensor I/O connector	XS2			
Hirose Electric Co., Ltd.	Connector for FA sensor	HR24			

• For details, refer to the catalogues of the manufacturers' products.

Switch specifications

- No. of connector standards Models M12X1 screw locking
  - IEC 947-5-2
  - DIN/VDE 0660 part 208 A2
  - NECA (The Japan Electric Control Equipment Industry Association) 4202 Connector for FA sensor



## **Specifications**

-						
	With cord (1.5m)	AZ101	AZ111		_	—
de	With cord (5m)	AZ105	AZ115	—	_	AZ125
ပို	With connector (AC type)	—	—	AZ11A	_	—
	With connector (DC type)	—	—	—	AZ11B	—
Lo	ad voltage range	AC : 5 - 120V	DC : 5 - 30V	AC : 5 - 120V	DC : 5 - 50V	AC: 120 V or less DC: 30 V or less
Lo	ad current range	AC : 5 - 20mA	DC : 5 - 40mA	5 - 20mA	5 - 40mA	AC: 20 mA or less DC: 40 mA or less
Ma clo	ximum open/ se capacity			AC : 2VA DC : 1.5W		
Inn	er drop voltage		2V (at 10mA	) 3V or less		0V
Cu	rrent leak	0 _µ A		$_{10\mu A}$ or less		0μA
Wo	orking time			1ms or less		
Re	turn time			1ms or less		
Ins	ulation resistance		100 M Ω or mo	re at 500 MV DC (between	case and cord)	
Vo	Itage-proof		AC1500	V 1 min (between case ar	nd cord)	
Sh	ock resistance		29	94m/s ² (30G) (Non-repetitio	n)	
Vib	oration-proof	f Total amplitude 1.5mm, 10 - 55Hz (1 sweep, 1 min) 2 hours in X, Y, and Z directions				ns
Am	bient temperature		-10 -	+70°C (at non-freezing cor	idition)	
Wi	ring method		0.3mm ² 2-core	Outer diameter 4mm Oil-p	proof cabtyre cord	-10 - +100°C (at non-freezing condition)
Pro	otective structure		IP67 (IEC standards)	, JIS C0920 (dusts-proof, ir	nmersion-proof type)	
Cor	ntact protective circuit	Note) None		Equipped		Note) None
Inc	licating lamp		LED (red lamp lig	hts up during ON)		None
Ele	ectric circuit	Reed switch (Blue)	Reed switch	Protective circuit	(Brown)	No polarity $\oplus$ , $\bigcirc$ (Brown) Reed switch (Blue)
Applied load		Small relay • Programmable Controller Controller Controller Controller				IC circuit, small relay, programmable controller

Notes) • When using induction load (including a small relay) for the switch without contact protective circuit, be sure to provide the protective circuit (SK-100) for the load.
For the cord length and connector pin position of the connector type, refer to the dimensional drawings.
When using the AC voltage input programmable controller as a load, select the switch with contact protective circuit.

*ø*80,

*ø*80,

*ø*80,

### Applicable hydraulic cylinder

Series	Bore	Series	Bore
35S-1R	\$\phi20, \$\phi25, \$\phi32, \$\phi40, \$\phi50, \$\phi63\$	100Z-1R	<i>\$</i> \$\phi20, <i>\$</i> \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$
HQS2R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$	100H-2R	<i>\$</i> 932, <i>\$</i> 40, <i>\$</i> 50, <i>\$</i> 63, <i>\$</i> 80
100S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$		<i>φ</i> 100, <i>φ</i> 125
160S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80\$	70/140H-8R	<i>\$</i> 932, <i>\$</i> 40, <i>\$</i> 50, <i>\$</i> 63, <i>\$</i> 80
210S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80\$		φ100, φ125, φ140
35Z-1R	<i>ϕ</i> 20, <i>ϕ</i> 25, <i>ϕ</i> 32	160H-1R	<i>\$</i> 932, <i>\$</i> 40, <i>\$</i> 50, <i>\$</i> 63, <i>\$</i> 80
35H-3R	\$\phi 32, \$\phi 40, \$\phi 50, \$\phi 63, \$\phi 80, \$\phi 100\$		φ100, φ125, φ140, φ160

Series	Bore
210C-1R	<i>φ</i> 40, <i>φ</i> 50, <i>φ</i> 63, <i>φ</i> 80
70/140Y-2R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80,\$\$\$
	<i>ϕ</i> 100, <i>ϕ</i> 125
35P-3R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80,\$\$\$
	<i>ϕ</i> 100
70/140P-8R	<i>\$</i> 32, <i>\$</i> 40, <i>\$</i> 50, <i>\$</i> 63, <i>\$</i> 80,
	<i>ϕ</i> 100

### **Dimensional Drawing**





AZ11A (AC type)

Connector pin position





Connector pin position



#### Applicable counter connectors

Manufacturers	Connector s	series name		
Correns Co., Ltd.	VA connector	VA-4DS, VA-4DL		
Omron Corporation	XS2 sensor I/O connector	XS2		
Hirose Electric Co., Ltd.	Connector for FA sensor	HR24		

• For details, refer to the catalogues of the manufacturers' products.

<u>(-....)</u>

• No. of connector standards

- Models M12X1 screw locking
- IEC 947-5-2
- DIN/VDE 0660 part 208 A2
- NECA (The Japan Electric Control Equipment Industry Association) 4202 Connector for FA sensor

# Handling instructions

# Handling instructions

### Precautions for wiring

- 1. Prior to wiring, be sure to shut down the power supply to the electric circuit of the connection side.
  - Otherwise, the operator may get an electric shock during working, or the switches or load devices may be damaged.
- Pay attention to avoid bending, pulling, twist of the switch cord. Especially, provide appropriate measures to avoid any load applied to the end of the switch cord, including the fixing of the switch cord to the tie rod (see
  - Otherwise, the cord may be damaged, causing broken wires. Especially, any load applied to



the end of the cord may lead to the damaged electric circuit boards in the switches.

- When fixing the cord to the tie rod, do not clamp the cord excessively. Otherwise, the cord may be damaged, causing broken wires.
- 3. The larger bending radius is better for the cord.
  - If the bending radius is excessively small, the cord may be damaged. The recommended bending radius is twice of the cord dia. or larger.
- 4. If the connection distance is long, fix the cord every 20 cm to avoid a sag in the cord.
- 5. When laying the cord on the floor, protect it by covering with metallic tubes to avoid direct treading on it or a crush under machines.
  - Otherwise, the coating of the cord may be damaged, leading to the broken wires or short-circuit.
- 6. The distance between the switches and load devices or power supply must be 10 m or shorter.
  - Otherwise, inrush current may occur to the switches during operation, causing the damaged switches. For the countermeasures against inrush current, refer to the "Precautions for contact protection".
- DO NOT bind the cord with high-voltage cables for other electric appliances, the power supply, nor with the power supply cord. NEVER perform wiring near these cables.
  - Otherwise, noises may enter the switch cord from the highvoltage cables and power source or power supply cable, causing the malfunctioned switches or load devices. It is recommended that the cord is protected with a shield tube.

### **Precautions for connection**

- 1. Be sure to shut down the power supply to the switches.
  - Otherwise, the operator may get an electric shock during working, or the switches and load devices may be damaged.
- Avoid the voltage and current out of the specifications of the switches, and the load exceeding the contact open/close capacity.
  - Application of wrong voltage or current may lead to malfunctions and damages to the switches.

- DO NOT connect the switches direct to the power supply. Be sure to connect them through load devices, such as small relays and programmable controllers.
  - Otherwise, short-circuit may occur to the circuit, causing the malfunctions of the switches.
  - Use only one relay among the choices shown below or an equivalence.

Omron Corporation	:	MY type
Idec Izumi Corporation	:	RY type
Fuji Electric Co., Ltd.	:	HH-5 type
Matsushita Electric Works, Ltd.	:	HC type

- 4. Perform wiring correctly according to the colors of lead wires.
  - If an electric current is supplied without the correction of the wrong wiring, the switches will be damaged, and the load devices may also be damaged. If wiring is performed incorrectly, it will lead to the inflammable damage of the electric circuit inside the switches, even if the wrong wiring is momentary.

# <Connecting method>

### 1. Basic connection

Connection to PLC (programmable controller)

 a) In the case that the power supply is contained in the PLC



- The circuit diagram above shows the connection example in the case of the DC input type PLC.
- (For details, refer to the handling instructions of the PLC.)
  The connection of the AC input type PLC is similar to the above example. Refer to "Precautions for contact protection".
- b) In the case that the power supply is not contained in the PLC



- The circuit diagram above shows the connection example in the case of the DC input type PLC.
- (For details, refer to the handling instructions of the PLC.)
- The connection of the AC input type PLC is similar to the above example. Refer to "Precautions for contact protection".

2) Connection to small relay



 For the protective circuits, refer to "Precautions for contact protection".

### 2. Multiple connection

Avoid multiple connection of the switches (connection in series and connection in parallel), since it may be inapplicable depending on the combination of load devices.

1) Connection in parallel

The circuit diagram is shown below.

- Indicator lamps may not light up, depending on the combination of load devices.
- Remember that if any leakage current is present in the switches, it will be increased according to the number of the switches.

The leakage current may lead to the unexpected working or impossibility of return of load devices.



- Set the connection so that the following condition is satisfied: sum of leakage currents < return current value of load devices.
- Set the connection in the case of AC power supply similarly to the above.
- 2) Connection in series

The circuit shown below is recommended.

Provide a small relay for a switch, and connect the contacts of the small relays in series.



- Remember that the connection of the switches in series will lead to the increased inner drop voltage of the switch output according to the number of the switches. If the inner drop voltage is increased, load devices may not work.
- When connecting the switches in series, set the connection so that the following condition is satisfied: sum of inner drop voltage < working voltage of load devices.</li>
- Set the connection in the case of AC power supply similarly to the above.
- Be sure to connect the protective circuits to the both ends of the relay coil.

### Precautions for contact protection

1. Connection to induct load devices (small relay, solenoid valves, etc.)

Remember that surge voltages will occur when the switch is set to the OFF position. Be sure to provide the protective circuit on the side of the load devices to protect the contacts.

 Unless the protective circuit shown below is provided, the internal electric circuit of the switch may be damaged due to the surge voltage.



-Surge

Tabsorber



(R)

Switch

DC + AC



#### Surge absorber

R: relay coil

Use at 24 V DC	Varistor voltage: approx. 30 V	
Use at 48 V DC	Varistor voltage: approx. 60 V	
Use at 100 V AC	Varistor voltage: approx. 180 V	

# **Handling instructions**

2. In the case of the extension of the switch cord by 10 m or more, or the connection to the AC input type PLC (programmable controller) and capacity loads (condenser, etc.), inrush current will occur when the switch is set to the ON position. Be sure to provide the protective circuit as shown in the circuit diagram below.



R : inrush current limit resistor R = apply the possible great resistance within the allowable range of the circuit on the load device.

- If the applied resistance is excessively great, the load device may not work.
- Provide the wiring for the switches as near as possible (within 2 m).

L : choke coil

L = equivalence to approx. 2mH

- Provide the wiring for the switches as near as possible (within 2 m)
- Unless the protective circuit shown below is provided, the internal electric circuit of the switch may be damaged due to inrush currents.

# Precautions for installation

- 1. DO NOT use cylinders and switches in the places where are directly subjected to chips and cutting oil.
  - Otherwise, the cord may be damaged by chips, or cutting oil may enter the switch inside, and short-circuit may occur, causing the malfunctions of the switches.
- 2. Prior to the use of the switches near a strong magnetic field, install the magnetic shield with steel plates (install it 20 mm or more distant from the cylinder and switch).
  - Otherwise, the switches may work incorrectly due to the influence of the magnetic field.



- 3. Keep away strong magnetic substances (such as iron) from cylinders outside and switches. Separate them by approx. 20 mm or more (as a guide). For compact cylinders, separate them by approx. 10 mm or more (KR and ZR type switches).
  - Otherwise, the switches may work incorrectly due to the influence of the strong magnetic substances.



## Detectable cylinder piston speed

- When mounting the switch on the intermediate position, be sure to adjust the maximum cylinder speed to 300 mm/s or slower on account of the response speed of the load relays, etc.
- If the piston speed is excessively high, the switch working time becomes shorter, although the switch works, and load devices including relays may not work.

Determine the detectable cylinder piston speed, referring to the formula below.

Detectable piston speed (mm/s) = 
$$\frac{\text{working range of switch (mm)}}{\text{working time of load device (ms)}} \times 1000$$

#### (Notes)

- Refer to the materials related the working time of load devices, including relays, of each manufacturer.
- Apply the minimum value to the working range of a switch, and apply the maximum value to the working time of a load device.



# Switch specifications Magnetic Proximity Type/ With No Contact



**AZ Type Switch** 





# **Specifications**

-	
용 With cord (1.5m)	AX221
S With cord (5m)	AX225
Wiring direction	Rear wiring
Power supply voltage range	DC : 5 - 30V
Load voltage range	DC: 30 V or less
Load current	Max. 200mA (NPN open collector output)
Consumption current	Max. 15mA
Inner drop voltage	At 200 mA, 0.6 V or less
Leak current	At 30 V DC, 10µA or less
Working time	1 ms or less
Return time	1 ms or less
Insulation resistance	100 M $\Omega$ or more at 500 MV DC (between case and cord)
Voltage-proof	AC 1500 V, 1 min (between case and cord)
Shock resistance	490m/s ² (Non-repetition)
Vibration-proof	Total amplitude 0.6 mm, 10 Hz to 200 Hz (log sweep 1 hour) in X, Y, and Z directions
Ambient temperature	-10 - +70°C (at non-freezing condition)
Wiring method	0.3 mm ² 3-core Outer diameter 4 mm Oil-proof cabtyre cord
Protective structure	IP67 (IEC standards), JIS C0920 (dust-proof, immersion-proof type)
Protective circuit	Equipped
Indicating lamp	LED (red lamp lights up during ON)
Electric circuit	Power supply (+, brown)
Applied load	IC circuit, small relay, programmable controller

# Applicable hydraulic cylinder

Series	Bore	Series	Bore		Series	Bore
35S-1R	\$\$\phi20, \$\$\phi25, \$\$\phi32, \$\$\phi40, \$\$\phi50, \$\$\phi63\$\$\$\$\$	100Z-1R	<i>\$</i> \$\phi_20, <i>\$</i> \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$		210C-1R	φ40, φ50, φ63, φ80
HQS2R	<i>\$</i> 932, <i>\$</i> 40, <i>\$</i> 50, <i>\$</i> 63, <i>\$</i> 80, <i>\$</i> 100	100H-2R	\$\$\phi\$32, \$\phi\$40, \$\phi\$50, \$\phi\$63, \$\phi\$80,		70/140Y-2R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\$\$\$
100S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$		φ100, φ125			φ100, φ125
160S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80\$\$\$\$	70/140H-8R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\$\$\$\$		35P-3R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\$\$\$\$
210S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80\$\$\$\$		φ100, φ125, φ140			<i>ф</i> 100
35Z-1R	<i>ø</i> 20, <i>ø</i> 25, <i>ø</i> 32	160H-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\$\$\$\$\$	1	70/140P-8R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80,\$\$\$\$
35H-3R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$		φ100, φ125, φ140, φ160			<i>ϕ</i> 100, <i>ϕ</i> 125



# **Dimensional Drawing**

• Cord type AX221 • AX225





# Specifications

Ð	With cord (1.5m)	AX201							
po	With cord (5m)	AX205							
0	With connector	AX20B							
Wi	ring direction	Rear wiring							
Lo	ad voltage range	DC : 5 - 30V							
Lo	ad current range	DC : 5 - 40 mA							
Inr	er drop voltage	3 V or less							
Le	ak current	0.7 mA or less							
Wo	orking time	1 ms or less							
Re	turn time	1 ms or less							
Ins	ulation resistance	100 M $\Omega$ or more at 500 MV DC (between case and cord)							
Vo	Itage-proof	AC 1500 V, 1 min. (between case and cord)							
Sh	ock resistance	490m/s ² (Non-repetition)							
Vib	oration-proof	Total amplitude 0.6 mm, 10 Hz to 200 Hz (log sweep 1 hour) in X, Y, and Z directions							
Am	bient temperature	-10 - +70°C (at non-freezing condition)							
Wi	ring method	0.3 mm ² 2-core Outer diameter 4 mm Oil-proof cabtyre cord							
Pro	otective structure	IP67 (IEC standards), JIS C0920 (dust-proof, immersion-proof type)\							
Coi	ntact protective circuit	Equipped							
Inc	licating lamp	LED (red lamp lights up during ON)							
Ele	ectric circuit	Switch main circuit LED Transistor							

Small relay, programmable controller

# Applicable hydraulic cylinder

Series	Bore	Series	Bore	Series	Bore
35S-1R	\$\phi 20, \$\phi 25, \$\phi 32, \$\phi 40, \$\phi 50, \$\phi 63\$	100Z-1R	<i>ϕ</i> 20, <i>ϕ</i> 25, <i>ϕ</i> 32	210C-1R	φ40, φ50, φ63, φ80
HQS2R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$	100H-2R	\$\$\phi\$32, \$\phi\$40, \$\phi\$50, \$\phi\$63, \$\phi\$80,	70/140Y-2R	\$\$\phi\$32, \$\$\phi\$40, \$\$\phi\$50, \$\$\phi\$63, \$\$\phi\$80,
100S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$		<i>ϕ</i> 100, <i>ϕ</i> 125		φ100, φ125
160S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80\$\$\$\$	70/140H-8R	\$\$\phi\$32, \$\phi\$40, \$\phi\$50, \$\phi\$63, \$\phi\$80,	35P-3R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\$\$\$
210S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80\$\$\$\$		φ100, φ125, φ140		<i>ф</i> 100
35Z-1R	<i>\$</i> \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	160H-1R	\$\$\phi\$32, \$\phi\$40, \$\phi\$50, \$\phi\$63, \$\phi\$80,	70/140P-8R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\$\$\$\$
35H-3R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$		φ100, φ125, φ140, φ160		<i>ф</i> 100



Cord type
 AX201 • AX205



Connector type

AX20B



AX20B (DC type)

Connector pin position



No. of connector standards

- Models M12X1 screw locking
- IEC 947-5-2
- DIN/VDE 0660 part 208 A2
- NECA (The Japan Electric Control Equipment Industry Association) 4202 Connector for FA sensor

### Applicable counter connectors

Manufacturers	Connector s	series name		
Correns Co., Ltd.	VA connector	VA-4DS, VA-4DL		
Omron Corporation	XS2 sensor I/O connector	XS2		
Hirose Electric Co., Ltd.	Connector for FA sensor	HR24		

 For details, refer to the catalogues of the manufacturers' products.



# Specifications

a)	With cord (1.5m)	AZ201								
po	With cord (5m)	AZ205								
0	With connector	AZ20B								
Wi	ring direction	Upper wiring								
Lo	ad voltage range	DC : 5 - 30V								
Lo	ad current range	DC : 5 - 40 mA								
Inr	ner drop voltage	3 V or less								
Le	ak current	0.7 mA or less								
Wo	orking time	1 ms or less								
Re	turn time	1 ms or less								
Ins	ulation resistance	100 M $\Omega$ or more at 500 MV DC (between case and cord)								
Vo	Itage-proof	AC 1500 V, 1 min. (between case and cord)								
Sh	ock resistance	490m/s ² (Non-repetition)								
Vit	oration-proof	Total amplitude 0.6 mm, 10 Hz to 200 Hz (log sweep 1 hour) in X, Y, and Z directions								
An	bient temperature	-10 - +70°C (at non-freezing condition)								
Wi	ring method	0.3 mm ² 2-core Outer diameter 4 mm Oil-proof cabtyre cord								
Pro	otective structure	IP67 (IEC standards), JIS C0920 (dust-proof, immersion-proof type)								
Со	ntact protective circuit	Equipped								
Inc	licating lamp	LED (red lamp lights up during ON)								
Ele	ectric circuit	Switch main circuit LED Transistor GND (Blue)								
Ap	plied load	Small relay, programmable controller								

# Applicable hydraulic cylinder

Series	Bore	Series	Bore	Series	Bore
35S-1R	\$\$\phi20, \$\$\phi25, \$\$\phi32, \$\$\phi40, \$\$\phi50, \$\$\phi63\$\$	100Z-1R	<i>\$</i> \$\phi20, <i>\$</i> \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	210C-1R	\$\$\phi40, \$\$\phi50, \$\$\phi63, \$\$\phi80\$
HQS2R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$	100H-2R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80,\$\$\$	70/140Y-2R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\$\$
100S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$		φ100, φ125		φ100, φ125
160S-1R	<i>\$</i> 932, <i>\$</i> 40, <i>\$</i> 50, <i>\$</i> 63, <i>\$</i> 80	70/140H-8R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80,\$\$\$	35P-3R	\$\$\phi\$32, \$\phi\$40, \$\phi\$50, \$\phi\$63, \$\phi\$80,
210S-1R	<i>φ</i> 32, <i>φ</i> 40, <i>φ</i> 50, <i>φ</i> 63, <i>φ</i> 80		φ100, φ125, φ140		<i>ф</i> 100
35Z-1R	<i>\$</i> \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	160H-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80,\$\$\$	70/140P-8R	\$\$\phi\$32, \$\phi\$40, \$\phi\$50, \$\phi\$63, \$\phi\$80,
35H-3R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$		φ100, φ125, φ140, φ160		<i>ф</i> 100

Dimensional Drawing





### AZ20B (DC type)

Connector pin position



### Applicable counter connectors

Manufacturers	Connector s	series name
Correns Co., Ltd.	VA connector	VA-4DS, VA-4DL
Omron Corporation	XS2 sensor I/O connector	XS2
Hirose Electric Co., Ltd.	Connector for FA sensor	HR24

• For details, refer to the catalogues of the manufacturers' products.

- No. of connector standards
- Models M12X1 screw locking
- IEC 947-5-2
- DIN/VDE 0660 part 208 A2
- NECA (The Japan Electric Control Equipment Industry Association) 4202 Connector for FA sensor

AZ Type Switch



# **Specifications**

	With cord (1.5m)	AX211					
qe	With cord (5m)	AX215					
õ	With compositor	AX21C					
	with connector	AX21D					
Wi	ring direction	Rear wiring					
Lo	ad voltage range	DC : 5 - 30V					
Lo	ad current range	DC : 5 - 40 mA					
Inr	ner drop voltage	3 V or less					
Le	ak current	0.7 mA or less					
Wo	orking time	1 ms or less					
Re	turn time	1 ms or less					
Ins	ulation resistance	100 M $\Omega$ or more at 500 MV DC (between case and cord)					
Vo	Itage-proof	AC 1500 V, 1 min. (between case and cord)					
Shock resistance		490m/s ² (Non-repetition)					
Vibration-proof		Total amplitude 0.6 mm, 10 Hz to 200 Hz (log sweep 1 hour) in X, Y, and Z directions					
An	nbient temperature	-10 - +70°C (at non-freezing condition)					
Wi	ring method	0.3 mm ² 2-core Outer diameter 4 mm Oil-proof cabtyre cord					
Pro	otective structure	IP67 (IEC standards), JIS C0920 (dust-proof, immersion-proof type)					
Co	ntact protective circuit	Equipped					
Inc	licating lamp	Working position: Red/green LED lights up Most suitable position: Green LED lights up					
Ele	ectric circuit	Switch main circuit LED LED Transistor					
Ap	plied load	Small relay, programmable controller					

Small relay, programmable controller

Note) AX211CE, AX215CE, and AX21BCE confirming to CE standards are also available.

### LED indicating style (Two-wire, two-lamp type)



# Applicable hydraulic cylinder

Series	Bore			
35S-1R	\$\phi20, \$\phi25, \$\phi32, \$\phi40, \$\phi50, \$\phi63\$			
HQS2R	\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$			
100S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$			
160S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80\$\$\$\$			
210S-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80\$\$\$\$			
35Z-1R	<i>φ</i> 20, <i>φ</i> 25, <i>φ</i> 32			
35H-3R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80, \$\phi_100\$			

Series	Bore			
100Z-1R	<i>\phi</i> 20, <i>\phi</i> 25, <i>\phi</i> 32			
100H-2R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80,\$\$\$			
	φ100, φ125			
70/140H-8R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80,\$\$\$			
	φ100, φ125, φ140			
160H-1R	\$\$\phi_32, \$\phi_40, \$\phi_50, \$\phi_63, \$\phi_80,\$\$\$			
	φ100, φ125, φ140, φ160			

Series	Bore		
210C-1R	\$\$\phi40, \$\$\phi50, \$\$\phi63, \$\$\phi80\$		
70/140Y-2R	\$\$\phi\$32, \$\$\phi\$40, \$\$\phi\$50, \$\$\phi\$63, \$\$\phi\$80,		
	φ100, φ125		
35P-3R	\$\$\phi\$32, \$\$\phi\$40, \$\$\phi\$50, \$\$\phi\$63, \$\$\phi\$80,		
	<i>ф</i> 100		
70/140P-8R	\$\$\phi\$32, \$\phi\$40, \$\phi\$50, \$\phi\$63, \$\phi\$80,		
	<i>ф</i> 100		



Cord type
 AX211 • AX215





AX21C · AX21D (DC type)



Applicable counte	er connectors
-------------------	---------------

Manufacturers	Connector series name				
Correns Co., Ltd.	VA connector	VA-4DS, VA-4DL			
Omron Corporation	XS2 sensor I/O connector	XS2			
Hirose Electric Co., Ltd.	Connector for FA sensor	HR24			

- For details, refer to the catalogues of the manufacturers' products.
- р
- As for the connector pin layout conforming to the IEC standards (1:+4:-), contact us.
- AX21B conforming to TMS standards is also available.

• TMS standards conforming type

132

# Handling instructions

### Precautions for wiring

- 1. Prior to wiring, be sure to shut down the power supply to the electric circuit of the connection side.
  - Otherwise, the operator may get an electric shock during working, or the switches or load devices may be damaged.
- Pay attention to avoid bending, pulling, twist of the switch cord. Especially, provide appropriate measures to avoid any load applied to the end of the switch cord, including the fixing of the switch cord to the tie rod (see the figure below).
  - Otherwise, the cord may be damaged, causing broken wires.
     Especially, any load applied to the end of the cord may lead to the damaged electric circuit boards in the switches.



- When fixing the cord to the tie rod, do not clamp the cord excessively. Otherwise, the cord may be damaged, causing broken wires.
- 3. The larger bending radius is better for the cord.
  - If the bending radius is excessively small, the cord may be damaged. The recommended bending radius is twice of the cord dia. or larger.
- 4. If the connection distance is long, fix the cord every 20 cm to avoid a sag in the cord.
- When laying the cord on the floor, protect it by covering with metallic tubes to avoid direct treading on it or a crush under machines.
  - Otherwise, the coating of the cord may be damaged, leading to the broken wires or short-circuit.
- 6. The distance between the switches and load devices or power supply must be 10 m or shorter.
  - Otherwise, inrush current may occur to the switches during operation, causing the damaged switches. For the countermeasures against inrush current, refer to the "Precautions for output circuit protection".
- DO NOT bind the cord with high-voltage cables for other electric appliances, the power supply, nor with the power supply cord. NEVER perform wiring near these cables.
  - Otherwise, noises may enter the switch cord from the highvoltage cables and power source or power supply cable, causing the malfunctioned switches or load devices. It is recommended that the cord is protected with a shield tube.

# **Precautions for connection**

- DO NOT connect the switches direct to the power supply. Be sure to connect them through load devices, such as small relays and programmable controllers.
  - Otherwise, short-circuit may occur to the circuit, causing inflammable damage of the switches.
- 2. Carefully check the switches used, voltage of power supply and load devices, and current specifications.
  - Application of wrong voltage or current may lead to the malfunctioned or damaged switches.
- 3. Perform wiring correctly according to the colors of lead wires. Prior to wiring, be sure to shut down the power supply to the electric circuit of the connection side.

 Wrong wiring and short-circuit of load devices may lead to the damaged switches and electric circuit in the load devices. Even if the short-circuit is momentary, it causes the inflammable damage of the main circuit or output circuit.
 Operation with electric current supplied may lead to the damages in switches and electric circuit of the load devices.



# < Connecting method> 1. Basic circuit



### 2. Contact to PLC (Programmable controller)

• In the case that the power supply is contained in the PLC



- Note) For details, refer to the handling instructions of the PLC used.
- In the case that the power supply is not contained in the PLC



Note) For details, refer to the handling instructions of the PLC used.

### 3. Multiple connection

Avoid multiple connection of the switches (connection in series and connection in parallel), since it may be inapplicable depending on the combination of load devices.

- 1) Connection in parallel
  - The working status of the switches can be checked with the indicator lamps of the switches.
  - Remember that leakage currents will be increased according to the number of the switches. The leakage currents may lead to the unexpected working or impossibility of return of load devices.



• Set the connection so that the following condition is satisfied: sum of leakage currents < return current value of load devices.

- 2) Connection in series
  - The connection in series of the switches is impossible. Provide a small relay as shown in the circuit diagram below, and connect the contacts of the small relays in series, or program the connection so that the PLC internal contacts can be connected in series with the switches.



Note) • Be sure to connect the protective circuits to the both ends of the relay coil. For the protective circuit and connecting method, refer to the items related to the output circuit protection.

### Precautions for output circuit protection

 In the case of the connection to induct load devices (small relay, solenoid valves, etc.)

Remember that the surge voltage will occur when the switch is set to the OFF position. Be sure to provide the protective circuit on the side of load devices to protect the contacts.

 Unless the protective circuit shown below is provided, the internal electric circuit of the switch may be damaged due to the surge voltage.



- 2. In the case of the connection to the capacity loads (condenser, etc.) or the extension of the switch cord by 10 m or more Inrush currents will occur when the switch is set to the ON position. Be sure to provide the protective circuit near the switch (within 2 m from the switch) as shown in the circuit diagram below.
  - Unless the protective circuit shown below is provided, the internal electric circuit of the switch may be damaged due to the inrush currents.



R: inrush current limit resistor

R = apply the possible great resistance within the allowable range of the circuit on the load device.

Notes)

- If the applied resistance is excessively great, the load device may not work.
- Provide the wiring for the switches as near as possible (within 2 m).



L : choke coil

L = equivalence to approx. 2mH

Note)

• Provide the wiring for the switches as near as possible (within 2 m).

# Handling instructions

### Precautions for installation

- 1. DO NOT use cylinders and switches in the places where are directly subjected to chips and cutting oil.
  - Otherwise, the cord may be damaged by chips, or cutting oil may enter the switch inside, and short-circuit may occur, causing the malfunctions of the switches.
- 2. Prior to the use of the switches near a strong magnetic field, install the magnetic shield with steel plates (install it 20 mm or more distant from the cylinder and switch).
  - Otherwise, the switches may work incorrectly due to the influence of the magnetic field.



- 3. Keep away strong magnetic substances (such as iron) from cylinders outside and switches. Separate them by approx. 20 mm or more (as a guide). For compact cylinders, separate them by approx. 10 mm or more ).
  - Otherwise, the switches may work incorrectly due to the influence of the strong magnetic substances.



## Detectable cylinder piston speed

- When mounting the switch on the intermediate position, be sure to adjust the maximum cylinder speed to 300 mm/s or slower on account of the response speed of the load relays, etc.
- If the piston speed is excessively high, the switch working time becomes shorter, although the switch works, and load devices including relays may not work.

Determine the detectable cylinder piston speed, referring to the formula below.

working range of switch (mm) Detectable piston speed (mm/s) =  $\times 1000$ working time of load device (ms)

(Notes)

- Refer to the materials related the working time of load devices, including relays, of each manufacturer.
- Apply the minimum value to the working range of a switch, and apply the maximum value to the working time of a load device.



# Switch specifications Magnetic proximity type (cutting fluid proof type)

WR/WS type switch ···· 137





**Reliable sealing performance** regardless of an environment where is splashed direct with cutting oil

- Protective structure IP67G
- Flexible tubes have been standardized for the protection of cabtyre cords.
- Long service life even if cutting fluid is splashed (approx. 10 times longer compared to our conventional products)
- Oil-proof soft PVC has been adopted to the coatings of flexible tubes.
- The cord of upper take-out type and cord type (without flexible tube) have been added to allow the selection in wide varieties depending on applications.
- · No contact type with only 2-wires for less wiring

The adoption of the 2-LED system permits easier setting of the most suitable setting position.

**Specifications** 

Contact types		Contact		No contact		
Code	With cord (5m)	WR505, WR515, WR525, WR545	WR535, WR555	WS215, WS225, WS235, WS255	WS245, WS265	
Wiring	direction	Rear	Upper	Rear	Upper	
Load vol	tage, current	DC5-50V•AC5-120V	DC3-40mA•AC3-20mA	DC10-30V 6-70mA		
Inner d	rop voltage	2V o	r less	4V oi	rless	
Max. or close c	pen/ apacity	DC1.5W	•AC2VA			
Curren	t leak	OĻ	ιA	1mA or less		
Respor	nse time		1ms c	or less		
Insulatio	on resistance	100M $\Omega$ or r	nore at 500 MV I	DC (between cas	e and cord)	
Voltage	e-proof	AC1500V, 1 min (between case and cord)				
Shock	resistance	294m/s² (No	on-repetition)	490m/s ² (Non-repetition)		
Vibration-proof		Lateral oscill 10 to 55 Hz (1 s 2 hours in X, Y,	ation 1.5 mm weep for 1 min) and Z directions	Lateral oscillation 0.6 mm 10 to 200 Hz log sweep for 1 hour in X, Y, and Z directions		
Ambier temper	nt ature	-10 - +60°C (at non-freezing condition)				
Wiring	method	0.3 mm ² 2-core Outer diameter 4 mm Oil-proof cabtyre cord				
Protecti	ve structure	IP67G (JEN standards)(oil-proof type)				
Indicating lamp		LED (red lamp lights up during ON)		Working position: red/green LED Most suitable position: green LED		
Electric circuit		LE Di Reed switch	LED Diode Blue Reed switch		er diode ⊃Output⊕(Brown) → OGND⊝(Blue)	
Applied load		Small relay • Programmable Controller				

Note) When using the induction load (small relay, etc.), the protective circuit SK-100 shall be surely provided for load.

# Switch structure diagram



# Applicable actuator and mounting bracket list

	Hydraulic actuator					
Actuator series	35H-3R	100H-2R 100H-2RD 100HW-2R	70/140H-8R * 70/140HW-8R 70/140Y-2R * 70/140YW-2R	35S-1R 35SY-1R	HQS2R HQSW2R 100S-1R 100SW-1R	160S-1R *160SW-1R
	WR505 WS215 (Flexible tube type)			WR525 WS235 (Rear wiring)		
Switch type	WR515 WS225 (Cord type)			WR535 WS245 (Upper wiring)		
Bore						
¢20	_	_	_		—	_
¢25	_	—	_		_	_
¢32						
φ40	R21WR (WS) H		R22WR (WS) -H			
φ50					T07WR (WS)H	
<b>¢63</b>			R23WR (WS) -H			
φ <b>80</b>		R23WR (WS) H	R24WR (WS) -H	—		
ф <b>1</b> 00	R23WR (WS)H	_	R25WR (WS) -H	-		_
¢125	_	_	R26WR (WS)H	-	—	—
ф <b>1</b> 40	_		_	_	_	
ф <b>1</b> 60			_		_	

Notes) • The *-marked actuators are of the cutting oil proof type. The WR and WS type switches can be provided for them as the standard outfits.

As for the actuators other than the *-marked ones, the WR and WS type switches can be provided as the semi-standard outfits.
Before using the WR or WS type switch for the actuators other than the *-marked ones, check the operating environment, and select appropriate switch.

### <Code example>



138

## **Dimensional drawings**



# WR-WS Type Switch

# Handling instructions

- Switch and flexible tube
- Connector parts configuration



Mounting to switch



- 1. Cut the flexible tube o at the required length (avoid any burr and deformation on the cut surface. Otherwise, the terminal cap may not be able to be fit).
- 2. Insert the jam nut (), ring washer (), seal packing (), and terminal cap 3 into the flexible tube 7 in this order (insert the terminal cap (3) into the bore of the flexible tube (7).
- 3. From the terminal cap () side, pass the cord () through the flexible tube with the parts from (3) to (3) inserted.
- 4. Insert the unit above into the switch bush 2, and tighten the jam nut 6 onto the threads of the switch bush 2.
- 5. Tighten the jam nut () until its end face comes in contact with the width across flats of the switch bush @ (in the arrow direction). Then, the mounting is complete.
- * When tightening the jam nut (6), wrench the width across flats of the switch bush @ with a spanner.



### Straight box connector and flexible tube

• Parts of straight box connector (F-SB)



Mounting to Straight box connector (F-SB)



- 1. Insert the jam nut (), ring washer (), seal packing (), and terminal cap () into the flexible tube () in this order (screw the terminal cap () into the bore of the flexible tube ().
- 2. Insert the end of the flexible tube () with the parts from () to the jam nut o onto the threads of the nipple body o.
- Tighten the jam nut o until its end face comes in contact with the width across flats of the nipple body (in the arrow direction). Then, the mounting is complete.
- Sectional drawing of completed mounting to straight box connector (F-SB)



# Cord type

Connector parts configuration



Width across flats

- Pass the cord () through the rubber bush (), ring washer (), and 1. bush cap G in this order.
- 2. Insert the parts passed through the cord into the switch bush  $\boldsymbol{Q}$ , and tighten the bush cap  $\odot$  onto the threads of the switch bush  $\oslash$ .
- 3. Tighten the bush cap () until its end face comes in contact with the width across flats of the switch bush (in the arrow direction). Then, the mounting is complete.
- When tightening the bush cap 6, hold the width across flats of the switch bush @ with a spanner, and tighten with hands.



140

# Handling instructions

### Precautions for working environmental conditions

- 1. It is possible to use in the places where are splashed with cutting fluid (coolant) for machine tools.
- The splash of the applicable cutting fluids shown below will not affect switches.

#### Adaptability of cutting fluid to WR and WS switches

Nonaqueous	cutting fluid	- Agucous outting fluid		
Type 1 Type 2		Aqueous cutting fluid		
0 x		0		

 $\bigcirc$  : applicable  $\times$  : inapplicable

- To keep oil resistance for a long period and reduce the influences on cylinders, protect with protective covers to avoid direct splashes of cutting fluid.
- 3. In case that switches are used in the places where are splashed with cutting fluid, use the cutting fluid proof type cylinders.
  - When using the cylinders of types other than the cutting fluid proof type, carefully check the adaptability of the packing material to the cutting fluid used (refer to "Selection of packing material").
- 4. It is possible to use in the places where are splashed with water.
  - Rust-proof measurers are required for cylinders (refer to the cylinder selection materials).
  - Rusts may occur to the connector part (brass) of switches, since no surface treatment is provided.

### Other precautions

• For details of wiring, connection, etc. of the WR type, refer to "Handling instructions of contact type". For those of the WS type, refer to "Handling instructions of no contact (2-wire, 2-LED) type".



# Code for arrangement of switches

# Code

- Code for arrangement of switches and bracket assemblies
- Code for arrangement of switches
- Code for arrangement of brackets



# 7/14 MPa JIS double acting hydraulic cylinder 70/140H-8R • 70/140HW-8R

Curitals toma	Dem	Assy type		Switch single unit type		Bracket
Switch type	Bore	Contact	No contact	Contact	No contact	type
	ф32~ф50	R34AX1**	R34AX2**	AX1**	AX2**	R34
	ф <b>6</b> 3	R35AX1**	R35AX2**			R35
AX type	<b>φ80 • φ100</b>	R36AX1**	R36AX2**			R36
(Cold real winng)	φ125	R37AX1**	R37AX2**			R37
	φ <b>1</b> 40	R38AX1**	R38AX2**			R38
	ф <b>32~</b> ф50	R34AZ1**	R34AZ2**	AZ1**	AZ2**	R34
17 turo	ф <b>6</b> 3	R35AZ1**	R35AZ2**			R35
AZ type	<b>φ80 • φ100</b>	R36AZ1**	R36AZ2**			R36
(Cord upper wining)	φ <b>125</b>	R37AZ1**	R37AZ2**			R37
·	φ <b>1</b> 40	R38AZ1**	R38AZ2**			R38
	ф <b>32~</b> ф50	R22WR***-H	R22WS***-H	WR***-H	WR***-H WS***-H	R22-H
	φ <b>6</b> 3	R23WR***-H	R23WS***-H			R23-H
WR type • WS type	φ80	R24WR***-H	R24WS***-H			R24-H
	φ100	R25WR***-H	R25WS***-H			R25-H
	φ125	R26WR***-H	R26WS***-H			R26-H

No contact

General purpose type

Switch specifications

Symbol/code for order of switches Contact General purpose type Cord rear wiring AF: AX101 (with 1.5 m cord) AG: AX105 (with 5 m cord) AH: AX111 (with 1.5 m cord) AJ: AX115 (with 5 m cord) AE: AX125 (with 5 m cord/no lamp) AK: AX11A (connector type/AC) AL: AX11B (connector type/DC) Cord upper wiring AP: AZ101 (with 1.5 m cord) AR: AZ105 (with 5 m cord) AS: AZ111 (with 1.5 m cord) AT: AZ115 (with 5 m cord) AN: AZ125 (with 5 m cord/no lamp) AU: AZ11A (connector type/AC) AW: AZ11B (connector type/DC) Cutting oil proof type 5: WR505 (with 5 m cord) 7: WR505F (with 5 m cord/flexible tube attached) 6: WR515 (with 5 m cord) CE standard No contact General purpose type 2-wire, 2-lamp type Cord rear wiring CT: AX211CE (with 1.5 m cord) CU: AX215CE (with 5 m cord) CV: AX21B (connector type/DC) Cord upper wiring

CW: AZ211CE (with 1.5 m cord) CX: AZ215CE (with 5 m cord) CY: AZ21B (connector type/DC)

2-wire, 1-lamp type Cord rear wiring BE: AX201 (with 1.5 m cord) BF: AX205 (with 5 m cord) Cord upper wiring BM: AZ201 (with 1.5 m cord) BN: AZ205 (with 5 m cord) ●2-wire, 2-lamp type Cord rear wiring CE: AX211 (with 1.5 m cord) CF: AX215 (with 5 m cord) Cord upper wiring CM: AZ211 (with 1.5 m cord) CN: AZ215 (with 5 m cord) ●3-wire, 1-lamp type Cord rear wiring BH: AX221 (with 1.5 m cord) BJ: AX225 (with 5 m cord) Cord upper wiring BR: AZ221 (with 1.5 m cord) BS: AZ225 (with 5 m cord) Cutting oil proof type 2: WS215 (2-lamp type, with 5 m cord) 4: WS215F (2-lamp type, with 5 m cord/flexible tube attached) 3: WS225 (2-lamp type, with 5 m cord)



# Sectional drawings/packing list
#### Code for arrangement of packing set

When placing orders, specify the codes as shown below.



- Notes) For details, refer to the sectional drawings.
  - The standard type is not equipped with the wear ring. It is provided for only the switch set.

146

Working oil	Packing material	-10	0	Temperature (°C)	80	100 	120
	Nitrile rubber						I
	Urethane rubber						I
Petroleum-based fluid	Fluoric rubber	I			-		I
	Hydrogenated nitrile rubber						
	Nitrile rubber						
Water-glycol fluid	Hydrogenated nitrile rubber		I		I		I
Phosphate ester fluid	Fluoric rubber						   
	Nitrile rubber						
water in oil fluid	Hydrogenated nitrile rubber						I
	Nitrile rubber						I
Oil in water fluid	Hydrogenated nitrile rubber						I

#### Working temperature range of packing material depending on working oil type

Notes) • Use the packings applicable to working oil used within the working temperature range. Otherwise, substantial abrasion and inferiority may occur to the packings.

• The temperature range shown in the table above is applicable to each packing material. For the switch sets, use them within the working temperature range applicable to the switches.

#### Adaptability of working oil to packing material

		A	daptable working o	bil		
Packing material	Petroleum- based fluid	Water-glycol fluid	Phosphate ester fluid	Water in oil fluid	Oil in water fluid	
1 Nitrile rubber	0	0	×	0	0	
2 Urethane rubber	0	×	×	Δ	Δ	
3 Fluoric rubber	0	×	0	0	0	
6 Hydrogenated nitrile rubber	0	0	×	0	0	

Notes)* The  $\bigcirc$  and  $\bigcirc$  -marked items are applicable, while the  $\chi$  -marked items are inapplicable. For the use of the  $\triangle$  -marked items, contact us.

* The O-marked items are the recommended packing materials in case of giving the first priority to abrasion resistance.

#### Cutting fluid proof type/adaptability of cutting fluid to packing material

Packing material	Nonaqueous	cutting fluid	
	Type 1	Туре 2	Aqueous cutting fluid
6 Hydrogenated nitrile rubber	0	x	0

Note) The  $\bigcirc$  -marked items are applicable, while the  $\mathbf x$  -marked items are inapplicable.

## Double acting single rod/standard type/70H-8, 140H-8 (rod A, B. C)

• Bore \$\$ - \$\$ 250

147



The detailed structure of the piston varies depending on the bore.

#### Enlarged drawing of part A

• Bore **\$32 - \$160** 

• Bore \$\$180 - \$\$250





# Enlarged drawing of part B (cushion valve)





• Bore \$\$125 - \$\$250



#### Parts list

No.	Name	Material	Q'ty
0	Cylinder tube	Carbon steel for machine structural use	1
8	Rod cover	Carbon steel for machine structural use (\phi32 - \phi80) Structural rolled steel (\phi100 - \phi250)	1
4	Head cover	Carbon steel for machine structural use (\phi32 - \phi80) Structural rolled steel (\phi100 - \phi250)	1
6	Piston	Gray cast iron	1
8	Piston rod	Carbon steel for machine structural use	1
Ø	Bush	Copper alloy	1
0	Retainer	Carbon steel for machine structural use (\phi32 - \phi80) Structural rolled steel (\phi100 - \phi250)	1
Ø	Cushion ring	Cast iron	1
Ø	Stop ring	Carbon steel for machine structural use ( $\phi$ 32 - $\phi$ 125) Piano wire ( $\phi$ 140 - $\phi$ 250)	(1)
G	Set screw	Chrome molybdenum steel	1
Ð	Cushion plug	Carbon steel for machine structural use	2
ß	Cushion valve	Chrome molybdenum steel	2
Ø	Cushion lock nut	Structural rolled steel	2
Ø	Check plug	Carbon steel for machine structural use	4
Ø	Check spring	Piano wire	4
Ø	Check ball	High carbon chromium bearing steel	4
<b>(3)</b>	Tie rod	Carbon steel for machine structural use (7 MPa: for \u00f663 - \u00f6250) Chrome molybdenum steel (7 MPa: for \u00f632 - \u00f650, 14 MPa)	4
Ø	Tie rod nut (type 2)	Carbon steel for machine structural use	8

• The quantities shown in the table above are applicable to the type with both ends cushioned.

• The item with the quantity in the ( ) mark may not be used depending on the bore and rod dia.



• Precautions for fitting of valve seals (), ()

The valve seals, **(ii)** and **(iii)**, must be fit in the specified direction and sequences. Wrong fitting direction and sequences will lead to the damaged packings, causing oil leak.

- Fitting sequences
- ① Check the direction of a valve seal.
- The marked side must be faced inside (refer to Fig.1). ② Fit the valve seal to the shaft of the cushion valve or the shaft of the check plug in correct fitting direction (refer to Fig.2).
- ③ Take care to prevent the valve seal from being dropped, and screw it in (refer to Fig.3).





Fit with the marked side facing inside of the cylinder.



(Valve seal fitting sequences)

# Packing list Standard type /1 nitrile rubber (rod B) / 70H-8, 140H-8

	o. Parts name Material					Parts code	•			
NO.	Parts name	Material	Q'ty	φ <b>3</b> 2	φ40	φ50	φ <b>6</b> 3	φ80	φ100	φ125
Ø	Piston packing	Nitrile rubber	2	UHP-32	SKY-30	SKY-40	SKY-53	SKY-71	SKY-85	SKY-112
Ð	Rod packing	Nitrile rubber	1	SKY-18	SKY-22.4	SKY-28	SKY-35.5	SKY-45A	SKY-56	SKY-71
<b>2</b> 3	Dust wiper	Nitrile rubber	1	SDR-18	SDR-22.4	SDR-28	SDR-35.5	SDR-45	SDR-56	SDR-71
<b>2</b> 9	Cover seal	Nitrile rubber	2	TT-32	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125
<b>(</b> )	O-ring for cover	Nitrile rubber	2	—	—	—	—	—	—	_
<b>(</b> )	O-ring for piston rod	Nitrile rubber	1	S-14	S-20	S-25	P-35.5	G-45	G-55	G-65
3	O-ring for cushion ring	Nitrile rubber	1	S-16	S-22.4	S-28	S-35.5	S-45	S-56	G-65
<b>(3)</b>	O-ring for bush	Nitrile rubber	1	P-22	G-25	G-30	G-40	G-50	G-60	G-75
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2	—	_	—	_	—	—	S-7
66	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-12H	CR-14H	Note 1) CX-14H	CR-18H
Packing set	Double acting single rod cylinder		1 set	NH8/PKS1 -032B	NH8/PKS1 -040B	NH8/PKS1 -050B	NH8/PKS1 -063B	NH8/PKS1 -080B	NH8/PKS1 -100B	NH8/PKS1 -125B

NI .	Destaura		01				Parts code	•		
NO.	Parts name	Material	Qʻty	<i>ф</i> 140	<i>ф</i> 150	<i>ф</i> 160	<i>ф</i> 180	<i>ф</i> 200	<i>ф</i> 224	<i>φ</i> 250
Ø	Piston packing	Nitrile rubber	2	SKY-125	SKY-136	SKY-145	SKY-165	SKY-180	SKY-204	SKY-230
8	Rod packing	Nitrile rubber	1	SKY-80	SKY-85	SKY-90	SKY-100	SKY-112	SKY-125	SKY-140
Ø	Dust wiper	Nitrile rubber	1	SDR-80	SDR-85	SDR-90	SDR-100	SDR-112	SDR-125	SDR-140
Ø	Cover seal	Nitrile rubber	2	TT-140	TT-150	TT-160	_	_	—	
0	O-ring for cover	Nitrile rubber	2	_	_	—	G-170	G-190	*G-214	G-240
6)	O-ring for piston rod	Nitrile rubber	1	G-70	G-75	G-80	G-75	G-85	G-95	*G-107
•	O-ring for cushion ring	Nitrile rubber	1	G-75	G-80	G-85	G-80	G-90	G-100	G-110
63	O-ring for bush	Nitrile rubber	1	G-85	G-90	G-95	G-110	G-125	G-140	G-155
34	Valve seal	Canned hydrogenated nitrile rubber	2	CR-18H	CR-18H	CR-22H	CR-22H	CR-22H	CR-22H	CR-22H
<b>(</b> )	O-ring for cushion valve	Hydrogenated nitrile rubber	2	S-7	S-7	S-11.2	S-11.2	S-11.2	S-11.2	S-11.2
<b>S</b> ð	Valve seal	Canned hydrogenated nitrile rubber	4	CR-18H	CR-18H	CR-22H	CR-22H	CR-22H	CR-22H	CR-22H
Packing set	Double acting single rod cylinder		1 set	NH8/PKS1 -140B	NH8/PKS1 -150B	NH8/PKS1 -160B	NH8/PKS1 -180B	NH8/PKS1 -200B	NH8/PKS1 -224B	NH8/PKS1 -250B

• The O-ring for cover @ conforms to JIS B2401-1B (Hs90). Other O-rings conform to JIS B2401-1A. The models with **-marks conform to TAIYO standards.

Note 1) The parts code of the cushion valve seal 🚱 and the check valve seal 🚱 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🚯, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

70/140H-8

				Parts code						
NO.	Parts name	Material	Q'ty	<i>ø</i> 32	<i>φ</i> 40	<i>φ</i> 50	<i>ø</i> 63	<i>\phi</i> 80		
Ø	Piston packing	Urethane rubber	2	Note 1) UHP-32	UHP-40	UHP-50	UHP-63	UHP-80		
æ	Pod pooking	Lirothono rubbor	1	ISI-18B	ISI-22.4B	ISI-28B	ISI-35.5B	ISI-45AB		
4	Note 2)		1	(UHR-18)	(UHR-22.4)	(UHR-28)	(UHR-35.5)	(UHR-45)		
<b>Ø</b>	Dust wiper	Urethane rubber	1	DHS-18	DHS-22.4	DHS-28	DHS-35.5	DHS-45		
Ð	Cover seal	Nitrile rubber	2	TT-32	TT-40	TT-50	TT-63	TT-80		
6)	O-ring for piston rod	Nitrile rubber	1	S-14	S-20	S-25	P-35.5	G-45		
Ð	O-ring for cushion ring	Nitrile rubber	1	S-16	S-22.4	S-28	S-35.5	S-45		
63	O-ring for bush	Nitrile rubber	1	P-22	G-25	G-30	G-40	G-50		
<b>3</b>	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-12H	CX-14H		
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2	—	—	—	_	—		
<b>S</b> 6	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-12H	CX-14H		
Packing set	Double acting single rod cylinder		1 set	NH8/PKS2 -032B	NH8/PKS2 -040B	NH8/PKS2 -050B	NH8/PKS2 -063B	NH8/PKS2 -080B		

# Standard type/2 urethane rubber (rod B) / 70H-8, 140H-8

			0.1			Parts code		
NO.	Parts name	Material	Q'ty	<i>φ</i> 100	<i>ф</i> 125	<i>φ</i> 140	<i>φ</i> 150	<i>ф</i> 160
Ø	Piston packing	Urethane rubber	2	UHP-100	UHP-125	UHP-140	UHP-150	UHP-160
•	Deducation		4	ISI-56B	ISI-71AB	ISI-80B	ISI-85B	ISI-90B
IJ	ROD packing Note 2)	Uretnane rubber	1	(UHR-56)	(UHR-71)	(UHR-80)	(UHR-85)	(UHR-90)
<b>Ø</b>	Dust wiper	Urethane rubber	1	DHS-56	DHS-71	DHS-80	DHS-85	DHS-90
Ø	Cover seal	Nitrile rubber	2	TT-100	TT-125	TT-140	TT-150	TT-160
6)	O-ring for piston rod	Nitrile rubber	1	G-55	G-65	G-70	G-75	G-80
Ð	O-ring for cushion ring	Nitrile rubber	1	S-56	G-65	G-75	G-80	G-85
<b>(3)</b>	O-ring for bush	Nitrile rubber	1	G-60	G-75	G-85	G-90	G-95
34	Valve seal	Canned hydrogenated nitrile rubber	2	Note 3) CX-14H	CR-18H	CR-18H	CR-18H	CR-22H
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2	_	S-7	S-7	S-7	S-11.2
<b>S</b> b	Valve seal	Canned hydrogenated nitrile rubber	4	Note 3) CX-14H	CR-18H	CR-18H	CR-18H	CR-22H
Packing set	Double acting single rod cylinder		1 set	NH8/PKS2 -100B	NH8/PKS2 -125B	NH8/PKS2 -140B	NH8/PKS2 -150B	NH8/PKS2 -160B

• The O-rings conform to JIS B2401-1A.

Note 1) The material of the piston packing of a bore of  $\varphi32$  is nitrile rubber.

Note 2) Rod seals ISI and UHR both are interchangeable with each other.

Note 3) The parts code of the cushion valve seal 🕑 and the check valve seal 🕲 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🚯, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

# Packing list Standard type/3 fluoric rubber (rod B/semi-standard) / 70H-8, 140H-8

	No. Parts name		0.1				Parts code	•		
NO.	Parts name	Material	Qʻty	φ <b>3</b> 2	φ40	φ50	φ63	φ80	φ100	φ125
<b>Ø</b>	Piston packing	Fluoric rubber	2	UHP-32	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100	UHP-125
Ø	Rod packing	Fluoric rubber	1	UHR-18	UHR-22.4	UHR-28	UHR-35.5	UHR-45	UHR-56	UHR-71
<b>2</b> 3	Dust wiper	Fluoric rubber	1	DHS-18	DHS-22.4	DHS-28	DHS-35.5	DHS-45	DHS-56	DHS-71
Ø	Cover seal	Fluoric rubber	2	TT-32	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125
<b>(</b> )	O-ring for cover	Fluoric rubber	2	—	—	—	—		—	_
6)	O-ring for piston rod	Fluoric rubber	1	S-14	S-20	S-25	P-35.5	G-45	G-55	G-65
•	O-ring for cushion ring	Fluoric rubber	1	S-16	S-22.4	S-28	S-35.5	S-45	S-56	G-65
63	O-ring for bush	Fluoric rubber	1	P-22	G-25	G-30	G-40	G-50	G-60	G-75
6)	Valve seal	Canned fluoric rubber	2	CX-12F	CX-12F	CX-12F	CX-12F	CX-14F	Note 1) CX-14F	CR-18F
65	O-ring for cushion valve	Fluoric rubber	2	—	_	—	_	_	—	S-7
<b>S</b> D	Valve seal	Canned fluoric rubber	4	CX-12F	CX-12F	CX-12F	CX-12F	CX-14F	Note 1) CX-14F	CR-18F
Packing set	Double acting single rod cylinder		1 set	NH8/PKS3 -032B	NH8/PKS3 -040B	NH8/PKS3 -050B	NH8/PKS3 -063B	NH8/PKS3 -080B	NH8/PKS3 -100B	NH8/PKS3 -125B

No. Par	Destaura		01				Parts code	•		
NO.	Parts name	Material	Qʻty	φ <b>1</b> 40	φ <b>1</b> 50	φ <b>16</b> 0	φ180	φ200	φ224	φ <b>25</b> 0
Ø	Piston packing	Fluoric rubber	2	UHP-140	UHP-150	UHP-160	SKY-165F	SKY-180F	SKY-204F	SKY-230F
Ð	Rod packing	Fluoric rubber	1	UHR-80	UHR-85	UHR-90	SKY-100F	SKY-112F	SKY-125F	SKY-140F
<b>Ø</b>	Dust wiper	Fluoric rubber	1	DHS-80	DHS-85	DHS-90	SDR-100F	SDR-112F	SDR-125F	SDR-140F
<b>@</b>	Cover seal	Fluoric rubber	2	TT-140	TT-150	TT-160	_			
<b>(</b> )	O-ring for cover	Fluoric rubber	2		_		G-170	G-190	*G-214	G-240
6)	O-ring for piston rod	Fluoric rubber	1	G-70	G-75	G-80	G-75	G-85	G-95	*G-107
3	O-ring for cushion ring	Fluoric rubber	1	G-75	G-80	G-85	G-80	G-90	G-100	G-110
63	O-ring for bush	Fluoric rubber	1	G-85	G-90	G-95	G-110	G-125	G-140	G-155
34	Valve seal	Canned fluoric rubber	2	CR-18F	CR-18F	CR-22F	CR-22F	CR-22F	CR-22F	CR-22F
<b>(</b> )	O-ring for cushion valve	Fluoric rubber	2	S-7	S-7	S-11.2	S-11.2	S-11.2	S-11.2	S-11.2
<b>S</b> ð	Valve seal	Canned fluoric rubber	4	CR-18F	CR-18F	CR-22F	CR-22F	CR-22F	CR-22F	CR-22F
Packing set	Double acting single rod cylinder		1 set	NH8/PKS3 -140B	NH8/PKS3 -150B	NH8/PKS3 -160B	NH8/PKS3 -180B	NH8/PKS3 -200B	NH8/PKS3 -224B	NH8/PKS3 -250B

• The hardness of the O-ring for cover 🕲 is Hs 90. Other O-rings conform to JIS B2401-4D (Hs70). The models with **-marks conform to TAIYO standards.

Note 1) The parts code of the cushion valve seal 🕲 and the check valve seal 🕲 applicable to the TA type rod cover of a 100 mm bore is CR-18F. The O-ring for cushion valve 🕲, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18F and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

# Standard type/6 hydrogenated nitrile rubber (rod B/semi-standard) / 70H-8, 140H-8

	_					Parts code		
NO.	Parts name	Material	Qʻty	ф <b>3</b> 2	φ40	φ50	φ <b>6</b> 3	φ80
<b>2</b> 5	Piston packing	Hydrogenated nitrile rubber	2	UHP-32	UHP-40	UHP-50	UHP-63	UHP-80
Ð	Rod packing	Hydrogenated nitrile rubber	1	UHR-18	UHR-22.4	UHR-28	UHR-35.5	UHR-45
<b>Ø</b>	Dust wiper	Hydrogenated nitrile rubber	1	DHS-18	DHS-22.4	DHS-28	DHS-35.5	DHS-45
Ø	Cover seal	Hydrogenated nitrile rubber	2	TT-32	TT-40	TT-50	TT-63	TT-80
6)	O-ring for piston rod	Hydrogenated nitrile rubber	1	S-14	S-20	S-25	P-35.5	G-45
Ð	O-ring for cushion ring	Hydrogenated nitrile rubber	1	S-16	S-22.4	S-28	S-35.5	S-45
63	O-ring for bush	Hydrogenated nitrile rubber	1	P-22	G-25	G-30	G-40	G-50
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-12H	CX-14H
6)	O-ring for cushion valve	Hydrogenated nitrile rubber	2	_				_
<b>S</b> D	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-12H	CX-14H
Packing set	Double acting single rod cylinder		1 set	NH8/PKS6 -032B	NH8/PKS6 -040B	NH8/PKS6 -050B	NH8/PKS6 -063B	NH8/PKS6 -080B

	o. Parts name Material					Parts code		
NO.	Parts name	Material	Q'ty	φ100	φ125	φ <b>1</b> 40	φ <b>1</b> 50	<i>ф</i> 160
Ø	Piston packing	Hydrogenated nitrile rubber	2	UHP-100	UHP-125	UHP-140	UHP-150	UHP-160
Ð	Rod packing	Hydrogenated nitrile rubber	1	UHR-56	UHR-71	UHR-80	UHR-85	UHR-90
<b>Ø</b>	Dust wiper	Hydrogenated nitrile rubber	1	DHS-56	DHS-71	DHS-80	DHS-85	DHS-90
Ð	Cover seal	Hydrogenated nitrile rubber	2	TT-100	TT-125	TT-140	TT-150	TT-160
6)	O-ring for piston rod	Hydrogenated nitrile rubber	1	G-55	G-65	G-70	G-75	G-80
<b>3</b>	O-ring for cushion ring	Hydrogenated nitrile rubber	1	S-56	G-65	G-75	G-80	G-85
63	O-ring for bush	Hydrogenated nitrile rubber	1	G-60	G-75	G-85	G-90	G-95
34	Valve seal	Canned hydrogenated nitrile rubber	2	Note 1) CX-14H	CR-18H	CR-18H	CR-18H	CR-22H
<b>()</b>	O-ring for cushion valve	Hydrogenated nitrile rubber	2	—	S-7	S-7	S-7	S-11.2
<b>3</b> 6	Valve seal	Canned hydrogenated nitrile rubber	4	Note 1) CX-14H	CR-18H	CR-18H	CR-18H	CR-22H
Packing set	Double acting single rod cylinder		1 set	NH8/PKS6 -100B	NH8/PKS6 -125B	NH8/PKS6 -140B	NH8/PKS6 -150B	NH8/PKS6 -160B

• The hardness of the O-ring for cushion valve 0 is Hs 70, and that of other O-rings is Hs 90.

Note 1) The parts code of the cushion valve seal 🚱 and the check valve seal 🕲 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🕲, S-7 is required for this type. The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

# Packing list Standard type/1 nitrile rubber (rod C) / 70H-8, 140H-8

70/140H-8

				Parts code						
NO.	Parts name	Material	Q'ty	<i>φ</i> 40	<i>φ</i> 50	<i>ф</i> 63	<i>ø</i> 80	<i>ф</i> 100	<i>ф</i> 125	<i>ф</i> 140
Ø	Piston packing	Nitrile rubber	2	SKY-30	SKY-40	SKY-53	SKY-71	SKY-85	SKY-112	SKY-125
Ð	Rod packing	Nitrile rubber	1	SKY-18	SKY-22.4	SKY-28	SKY-35.5	SKY-45A	SKY-56	SKY-63
<b>2</b> 3	Dust wiper	Nitrile rubber	1	SDR-18	SDR-22.4	SDR-28	SDR-35.5	SDR-45	SDR-56	SDR-63
Ø	Cover seal	Nitrile rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125	TT-140
•	O-ring for cover	Nitrile rubber	2	—	—	—	—	—		—
6)	O-ring for piston rod	Nitrile rubber	1	P-18	P-22.4	P-28	P-35.5	G-45	G-55	*G-58
<b>3</b>	O-ring for cushion ring	Nitrile rubber	1	P-18	P-22.4	P-28	P-35.5	G-45	G-55	G-60
63	O-ring for bush	Nitrile rubber	1	G-25	G-30	G-40	G-50	G-60	G-75	G-85
<b>3</b>	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H	CR-18H
69	O-ring for cushion valve	Hydrogenated nitrile rubber	2	—	_	_	_	_	S-7	S-7
60	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H	CR-18H
Packing set	Double acting single rod cylinder		1 set	NH8/PKS1 -040C	NH8/PKS1 -050C	NH8/PKS1 -063C	NH8/PKS1 -080C	NH8/PKS1 -100C	NH8/PKS1 -125C	NH8/PKS1 -140C

			<b>.</b>			Parts	code		
NO.	Parts name	Material	Q′ty	<i>ф</i> 150	<i>ф</i> 160	<i>ф</i> 180	<i>ф</i> 200	<i>ф</i> 224	<i>ф</i> 250
٩	Piston packing	Nitrile rubber	2	SKY-136	SKY-145	SKY-165	SKY-180	SKY-204	SKY-230
Ø	Rod packing	Nitrile rubber	1	SKY-67	SKY-71	SKY-80	SKY-90	SKY-100	SKY-112
<b>Ø</b>	Dust wiper	Nitrile rubber	1	SDR-67	SDR-71	SDR-80	SDR-90	SDR-100	SDR-112
Ø	Cover seal	Nitrile rubber	2	TT-150	TT-160		_		_
0	O-ring for cover	Nitrile rubber	2			G-170	G-190	*G-214	G-240
6)	O-ring for piston rod	Nitrile rubber	1	G-60	G-65	G-75	G-85	G-95	*G-107
•	O-ring for cushion ring	Nitrile rubber	1	G-65	G-70	G-80	G-90	G-100	G-110
•	O-ring for bush	Nitrile rubber	1	G-90	G-95	G-110	G-125	G-140	G-155
<b>3</b>	Valve seal	Canned hydrogenated nitrile rubber	2	CR-18H	CR-22H	CR-22H	CR-22H	CR-22H	CR-22H
\$	O-ring for cushion valve	Hydrogenated nitrile rubber	2	S-7	S-11.2	S-11.2	S-11.2	S-11.2	S-11.2
•	Valve seal	Canned hydrogenated nitrile rubber	4	CR-18H	CR-22H	CR-22H	CR-22H	CR-22H	CR-22H
Packing set	Double acting single rod cylinder		1 set	NH8/PKS1 -150C	NH8/PKS1 -160C	NH8/PKS1 -180C	NH8/PKS1 -200C	NH8/PKS1 -224C	NH8/PKS1 -250C

• The O-ring for cover 🕲 conforms to JIS B2401-1B (Hs90). Other O-rings conform to JIS B2401-1A (Hs70). The models with *-marks conform to TAIYO standards.

Note 1) The parts code of the cushion valve seal 🔮 and the check valve seal 🕲 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🕹, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

70/140H-8

						Parts code		
No.	Parts name	Material	Q'ty	<i>φ</i> 40	<i>φ</i> 50	<i>ø</i> 63	<i>\phi</i> 80	<i>φ</i> 100
26	Piston packing	Urethane rubber	2	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100
•	Ded a coltin o	l lasth sa sa mah han		ISI-18B	ISI-22.4B	ISI-28B	ISI-35.5B	ISI-45AB
Ŵ	Rod packing	Urethane rubber	1	(UHR-18)	(UHR-22.4)	(UHR-28)	(UHR-35.5)	(UHR-45)
<b>Ø</b>	Dust wiper	Urethane rubber	1	DHS-18	DHS-22.4	DHS-28	DHS-35.5	DHS-45
Ø	Cover seal	Nitrile rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100
6)	O-ring for piston rod	Nitrile rubber	1	P-18	P-22.4	P-28	P-35.5	G-45
•	O-ring for cushion ring	Nitrile rubber	1	P-18	P-22.4	P-28	P-35.5	G-45
<b>(3)</b>	O-ring for bush	Nitrile rubber	1	G-25	G-30	G-40	G-50	G-60
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-14H	Note 2) CX-14H
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2				_	_
36	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-14H	Note 2) CX-14H
Packing set	Double acting single rod cylinder		1 set	NH8/PKS2 -040C	NH8/PKS2 -050C	NH8/PKS2 -063C	NH8/PKS2 -080C	NH8/PKS2 -100C

# Standard type /2 urethane rubber (rod C) / 70H-8, 140H-8

			0.1	Parts code						
NO.	Parts name	Material	Q′ty	<i>ф</i> 125	<i>φ</i> 140	<i>φ</i> 150	<i>φ</i> 160			
Ø	Piston packing	Urethane rubber	2	UHP-125	UHP-140	UHP-150	UHP-160			
•	Deducation		4	ISI-56B	ISI-63B	ISI-67B	ISI-71AB			
IJ	ROD packing Note 1)	Uretnane rubber	1	(UHR-56)	(UHR-63)	(UHR-67)	(UHR-71)			
23	Dust wiper	Urethane rubber	1	DHS-56	DHS-63	DHS-67	DHS-71			
Ð	Cover seal	Nitrile rubber	2	TT-125	TT-140	TT-150	TT-160			
<b>(</b> )	O-ring for piston rod	Nitrile rubber	1	G-55	*G-58	G-60	G-65			
Ð	O-ring for cushion ring	Nitrile rubber	1	G-55	G-60	G-65	G-70			
<b>(3</b> )	O-ring for bush	Nitrile rubber	1	G-75	G-85	G-90	G-95			
34	Valve seal	Canned hydrogenated nitrile rubber	2	CR-18H	CR-18H	CR-18H	CR-22H			
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2	S-7	S-7	S-7	S-11.2			
<b>S</b> b	Valve seal	Canned hydrogenated nitrile rubber	4	CR-18H	CR-18H	CR-18H	CR-22H			
Packing set	Double acting single rod cylinder		1 set	NH8/PKS2 -125C	NH8/PKS2 -140C	NH8/PKS2 -150C	NH8/PKS2 -160C			

• The O-rings conform to JIS B2401-1A. The models with *-marks conform to TAIYO standards.

Note 1) Rod seals ISI and UHR both are interchangeable with each other.

Note 2) The parts code of the cushion valve seal ④ applicable to the TA type rod cover of a 100 mm bore is CR-18H, and the check valve seal ④ applicable to the same is CR-18. The O-ring for cushion valve ⑤, S-7 is required for this type. The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

# Packing list Standard type/3 fluoric rubber (rod C/semi-standard) / 70H-8, 140H-8

			0.1	Parts code						
NO.	Parts name	Material	Q′ty	<i>ϕ</i> 40	<i>φ</i> 50	<i>ф</i> 63	<i>ø</i> 80	<i>φ</i> 100	<i>ф</i> 125	<i>ф</i> 140
<b>Ø</b>	Piston packing	Fluoric rubber	2	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100	UHP-125	UHP-140
Ø	Rod packing	Fluoric rubber	1	UHR-18	UHR-22.4	UHR-28	UHR-35.5	UHR-45	UHR-56	UHR-63
<b>2</b> 3	Dust wiper	Fluoric rubber	1	DHS-18	DHS-22.4	DHS-28	DHS-35.5	DHS-45	DHS-56	DHS-63
Ø	Cover seal	Fluoric rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125	TT-140
<b>(</b> )	O-ring for cover	Fluoric rubber	2	—	_	—	—	—	—	—
6)	O-ring for piston rod	Fluoric rubber	1	P-18	P-22.4	P-28	P-35.5	G-45	G-55	*G-58
•	O-ring for cushion ring	Fluoric rubber	1	P-18	P-22.4	P-28	P-35.5	G-45	G-55	G-60
63	O-ring for bush	Fluoric rubber	1	G-25	G-30	G-40	G-50	G-60	G-75	G-85
6)	Valve seal	Canned fluoric rubber	2	CX-12F	CX-12F	CX-12F	CX-14F	Note 1) CX-14F	CR-18F	CR-18F
65	O-ring for cushion valve	Fluoric rubber	2	—	_	—	_	—	S-7	S-7
<b>S</b> D	Valve seal	Canned fluoric rubber	4	CX-12F	CX-12F	CX-12F	CX-14F	Note 1) CX-14F	CR-18F	CR-18F
Packing set	Double acting single rod cylinder		1 set	NH8/PKS3 -040C	NH8/PKS3 -050C	NH8/PKS3 -063C	NH8/PKS3 -080C	NH8/PKS3 -100C	NH8/PKS3 -125C	NH8/PKS3 -140C

	-		<b></b>			Parts	code		
NO.	Parts name	Material	Q′ty	<i>ф</i> 150	<i>ф</i> 160	<i>ф</i> 180	<i>φ</i> 200	<i>ф</i> 224	<i>ф</i> 250
Ø	Piston packing	Fluoric rubber	2	UHP-150	UHP-160	SKY-165F	SKY-180F	SKY-204F	SKY-230F
Ø	Rod packing	Fluoric rubber	1	UHR-67	UHR-71	SKY-80F	SKY-90F	SKY-100F	SKY-112F
<b>Ø</b>	Dust wiper	Fluoric rubber	1	DHS-67	DHS-71	SDR-80F	SDR-90F	SDR-100F	SDR-112F
Ø	Cover seal	Fluoric rubber	2	TT-150	TT-160	_	_		
<b>()</b>	O-ring for cover	Fluoric rubber	2		_	G-170	G-190	*G-214	G-240
6)	O-ring for piston rod	Fluoric rubber	1	G-60	G-65	G-75	G-85	G-95	*G-107
3	O-ring for cushion ring	Fluoric rubber	1	G-65	G-70	G-80	G-90	G-100	G-110
3	O-ring for bush	Fluoric rubber	1	G-90	G-95	G-110	G-125	G-140	G-155
34	Valve seal	Canned fluoric rubber	2	CR-18F	CR-22F	CR-22F	CR-22F	CR-22F	CR-22F
65	O-ring for cushion valve	Fluoric rubber	2	S-7	S-11.2	S-11.2	S-11.2	S-11.2	S-11.2
36	Valve seal	Canned fluoric rubber	4	CR-18F	CR-22F	CR-22F	CR-22F	CR-22F	CR-22F
Packing set	Double acting single rod cylinder		1 set	NH8/PKS3 -150C	NH8/PKS3 -160C	NH8/PKS3 -180C	NH8/PKS3 -200C	NH8/PKS3 -224C	NH8/PKS3 -250C

• The hardness of the O-ring for cover () is Hs 90. Other O-rings conform to JIS B2401-4D (Hs70). The models with *-marks conform to TAIYO standards.

Note 1) The parts code of the cushion valve seal 🕲 and the check valve seal 🕲 applicable to the TA type rod cover of a 100 mm bore is CR-18F. The O-ring for cushion valve 🕲, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18F and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

# Standard type/6 hydrogenated nitrile rubber (rod C/semi-standard) / 70H-8, 140H-8

						Parts code		
NO.	Parts name	Material	Q'ty	<i>φ</i> 40	<i>φ</i> 50	<i>ø</i> 63	<i>\phi</i> 80	<i>φ</i> 100
Ø	Piston packing	Hydrogenated nitrile rubber	2	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100
Ð	Rod packing	Hydrogenated nitrile rubber	1	UHR-18	UHR-22.4	UHR-28	UHR-35.5	UHR-45
<b>Ø</b>	Dust wiper	Hydrogenated nitrile rubber	1	DHS-18	DHS-22.4	DHS-28	DHS-35.5	DHS-45
Ø	Cover seal	Hydrogenated nitrile rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100
6)	O-ring for piston rod	Hydrogenated nitrile rubber	1	P-18	P-22.4	P-28	P-35.5	G-45
Ð	O-ring for cushion ring	Hydrogenated nitrile rubber	1	P-18	P-22.4	P-28	P-35.5	G-45
63	O-ring for bush	Hydrogenated nitrile rubber	1	G-25	G-30	G-40	G-50	G-60
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H
G	O-ring for cushion valve	Hydrogenated nitrile rubber	2	_	_	—	—	_
66	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H
Packing set	Double acting single rod cylinder		1 set	NH8/PKS6 -040C	NH8/PKS6 -050C	NH8/PKS6 -063C	NH8/PKS6 -080C	NH8/PKS6 -100C

					Parts	code	
NO.	Parts name	Material	Q'ty	<i>ф</i> 125	<i>φ</i> 140	<i>φ</i> 150	<i>φ</i> 160
Ø	Piston packing	Hydrogenated nitrile rubber	2	UHP-125	UHP-140	UHP-150	UHP-160
Ð	Rod packing	Hydrogenated nitrile rubber	1	UHR-56	UHR-63	UHR-67	UHR-71
23	Dust wiper	Hydrogenated nitrile rubber	1	DHS-56	DHS-63	DHS-67	DHS-71
Ø	Cover seal	Hydrogenated nitrile rubber	2	TT-125	TT-140	TT-150	TT-160
6)	O-ring for piston rod	Hydrogenated nitrile rubber	1	G-55	*G-58	G-60	G-65
3	O-ring for cushion ring	Hydrogenated nitrile rubber	1	G-55	G-60	G-65	G-70
63	O-ring for bush	Hydrogenated nitrile rubber	1	G-75	G-85	G-90	G-95
34	Valve seal	Canned hydrogenated nitrile rubber	2	CR-18H	CR-18H	CR-18H	CR-22H
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2	S-7	S-7	S-7	S-11.2
66	Valve seal	Canned hydrogenated nitrile rubber	4	CR-18H	CR-18H	CR-18H	CR-22H
Packing set	Double acting single rod cylinder		1 set	NH8/PKS6 -125C	NH8/PKS6 -140C	NH8/PKS6 -150C	NH8/PKS6 -160C

• The hardness of the O-ring for cushion valve 🚯 is Hs 70, and that of other O-rings is Hs 90. The models with **-marks conform to TAIYO standards.

Note 1) The parts code of the cushion valve seal 🚱 and the check valve seal 🕲 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🚯, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

# Packing list Standard type /1 nitrile rubber (rod A) / 70H-8, 140H-8

Nia	Dente nome	Matarial	014			Parts code		
NO.	Parts name	waterial	u ty	<i>φ</i> 40	<i>φ</i> 50	<i>ф</i> 63	<i>ø</i> 80	<i>φ</i> 100
Ø	Piston packing	Nitrile rubber	2	SKY-30	SKY-40	SKY-53	SKY-71	SKY-85
Ð	Rod packing	Nitrile rubber	1	SKY-28	SKY-35.5	SKY-45A	SKY-56	SKY-71
<b>Ø</b>	Dust wiper	Nitrile rubber	1	SDR-28	SDR-35.5	SDR-45	SDR-56	SDR-71
<b>2</b> 9	Cover seal	Nitrile rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100
Ð	O-ring for piston rod	Nitrile rubber	1	S-20	S-25	P-35.5	G-45	G-55
<b>@</b>	O-ring for cushion ring	Nitrile rubber	1	S-22.4	S-28	S-35.5	S-45	S-56
<b>3</b>	O-ring for bush	Nitrile rubber	1	G-30	G-40	G-50	G-60	G-75
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H
<b>(</b> )	O-ring for cushion valve	Hydrogenated nitrile rubber	2	—		—	—	—
<b>S</b> b	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H
Packing set	Double acting single rod cylinder		1 set	NH8/PKS1 -040A	NH8/PKS1 -050A	NH8/PKS1 -063A	NH8/PKS1 -080A	NH8/PKS1 -100A

			ġ		Parts	code	
NO.	Parts name	Material	Qʻty	<i>ф</i> 125	<i>ф</i> 140	<i>ф</i> 150	<i>ф</i> 160
3	Piston packing	Nitrile rubber	2	SKY-112	SKY-125	SKY-136	SKY-145
Ø	Rod packing	Nitrile rubber	1	SKY-90	SKY-100	SKY-100	SKY-112
<b>Ø</b>	Dust wiper	Nitrile rubber	1	SDR-90	SDR-100	SDR-100	SDR-112
8	Cover seal	Nitrile rubber	2	TT-125	TT-140	TT-150	TT-160
6)	O-ring for piston rod	Nitrile rubber	1	G-65	G-70	G-75	G-80
<b>3</b>	O-ring for cushion ring	Nitrile rubber	1	G-65	G-75	G-80	G-85
63	O-ring for bush	Nitrile rubber	1	G-95	G-110	G-110	G-125
34	Valve seal	Canned hydrogenated nitrile rubber	2	CR-18H	CR-18H	CR-18H	CR-22H
<b>(</b> )	O-ring for cushion valve	Hydrogenated nitrile rubber	2	S-7	S-7	S-7	S-11.2
66	Valve seal	Canned hydrogenated nitrile rubber	4	CR-18H	CR-18H	CR-18H	CR-22H
Packing set	Double acting single rod cylinder		1 set	NH8/PKS1 -125A	NH8/PKS1 -140A	NH8/PKS1 -150A	NH8/PKS1 -160A

• The O-rings conform to JIS B2401-1A.

Note 1) The parts code of the cushion valve seal 🚱 and the check valve seal 🚱 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🕲, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

70/140H-8

Na	Dente nome	Matarial	Q'ty           er         2           er         1           er         1           er         1           er         1           er         1           er         1           er         1	Parts code					
NO.	Parts name	Material	Qʻty	<i>ϕ</i> 40	<i>φ</i> 50	<i>ф</i> 63	<i>\</i> \$80	<i>φ</i> 100	
Ø	Piston packing	Urethane rubber	2	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100	
•	Ded peaking		4	ISI-28B	ISI-35.5B	ISI-45AB	ISI-56B	ISI-71AB	
IJ	Note 1)	Uretnane rubber		(UHR-28)	(UHR-35.5)	(UHR-45)	(UHR-56)	(UHR-71)	
<b>Ø</b>	Dust wiper	Urethane rubber	1	DHS-28	DHS-35.5	DHS-45	DHS-56	DHS-71	
Ø	Cover seal	Nitrile rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100	
6)	O-ring for piston rod	Nitrile rubber	1	S-20	S-25	P-35.5	G-45	G-55	
3	O-ring for cushion ring	Nitrile rubber	1	S-22.4	S-28	S-35.5	S-45	S-56	
63	O-ring for bush	Nitrile rubber	1	G-30	G-40	G-50	G-60	G-75	
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-14H	Note 2) CX-14H	
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2	_	_	_	_	_	
36	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-14H	Note 2) CX-14H	
Packing set	Double acting single rod cylinder		1 set	NH8/PKS2 -040A	NH8/PKS2 -050A	NH8/PKS2 -063A	NH8/PKS2 -080A	NH8/PKS2 -100A	

# Standard type/2 urethane rubber (rod A) / 70H-8, 140H-8

			0.1	Parts code					
NO.	Parts name	Material	Q′ty	<i>ф</i> 125	<i>ϕ</i> 140	<i>ф</i> 150	<i>ф</i> 160		
26	Piston packing	Urethane rubber	2	UHP-125	UHP-140	UHP-150	UHP-160		
Ð	Rod packing Note 1)	Urethane rubber	1	ISI-90B (UHR-90)	UHR-100	UHR-100	UHR-112		
23	Dust wiper	Urethane rubber	1	DHS-90	DHS-100	DHS-100	DHS-112		
<b>4</b> 9	Cover seal	Nitrile rubber	2	TT-125	TT-140	TT-150	TT-160		
<b>(</b> )	O-ring for piston rod	Nitrile rubber	1	G-65	G-70	G-75	G-80		
Ð	O-ring for cushion ring	Nitrile rubber	1	G-65	G-75	G-80	G-85		
63	O-ring for bush	Nitrile rubber	1	G-95	G-110	G-110	G-125		
34	Valve seal	Canned hydrogenated nitrile rubber	2	CR-18H	CR-18H	CR-18H	CR-22H		
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2	S-7	S-7	S-7	S-11.2		
<b>C</b> D	Valve seal	Canned hydrogenated nitrile rubber	4	CR-18H	CR-18H	CR-18H	CR-22H		
Packing set	Double acting single rod cylinder		1 set	NH8/PKS2 -125A	NH8/PKS2 -140A	NH8/PKS2 -150A	NH8/PKS2 -160A		

• The O-rings conform to JIS B2401-1A.

Note 1) Rod seals ISI and UHR both are interchangeable with each other.

Note 2) The parts code of the cushion valve seal 🔮 and the check valve seal 🌚 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🗐, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

Stan			ling	A/Senii-Stai		1-0, 1-011-0				
				Parts code						
No.	Parts name	Material	Q'ty	<i>φ</i> 40	<i>φ</i> 50	<i>φ</i> 63	<i>\phi</i> 80	<i>φ</i> 100		
Ø	Piston packing	Fluoric rubber	2	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100		
Ð	Rod packing	Fluoric rubber	1	UHR-28	UHR-35.5	UHR-45	UHR-56	UHR-71		
<b>Ø</b>	Dust wiper	Fluoric rubber	1	DHS-28	DHS-35.5	DHS-45	DHS-56	DHS-71		
Ø	Cover seal	Fluoric rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100		
6)	O-ring for piston rod	Fluoric rubber	1	S-20	S-25	P-35.5	G-45	G-55		
32	O-ring for cushion ring	Fluoric rubber	1	S-22.4	S-28	S-35.5	S-45	S-56		
3	O-ring for bush	Fluoric rubber	1	G-30	G-40	G-50	G-60	G-75		
34	Valve seal	Canned fluoric rubber	2	CX-12F	CX-12F	CX-12F	CX-14F	Note 1) CX-14F		
65	O-ring for cushion valve	Fluoric rubber	2	_	_		_	_		
36	Valve seal	Canned fluoric rubber	4	CX-12F	CX-12F	CX-12F	CX-14F	Note 1) CX-14F		
Packing set	Double acting single rod cylinder		1 set	NH8/PKS3 -040A	NH8/PKS3 -050A	NH8/PKS3 -063A	NH8/PKS3 -080A	NH8/PKS3 -100A		

## Standard type/3 fluoric rubber (rod A/semi-standard) / 70H-8, 140H-8

		Meterial O'			Parts	code	
NO.	Parts name	Material	Q'ty	<i>ф</i> 125	<i>ф</i> 140	<i>ф</i> 150	<i>ф</i> 160
25	Piston packing	Fluoric rubber	2	UHP-125	UHP-140	UHP-150	UHP-160
Ð	Rod packing	Fluoric rubber	1	UHR-90	SKY-100F	SKY-100F	SKY-112F
23	Dust wiper	Fluoric rubber	1	DHS-90	SDR-100F	SDR-100F	SDR-112F
Ø	Cover seal	Fluoric rubber	2	TT-125	TT-140	TT-150	TT-160
6)	O-ring for piston rod	Fluoric rubber	1	G-65	G-70	G-75	G-80
•	O-ring for cushion ring	Fluoric rubber	1	G-65	G-75	G-80	G-85
<b>3</b> 3	O-ring for bush	Fluoric rubber	1	G-95	G-110	G-110	G-125
34	Valve seal	Canned fluoric rubber	2	CR-18F	CR-18F	CR-18F	CR-22F
<b>3</b> 5	O-ring for cushion valve	Fluoric rubber	2	S-7	S-7	S-7	S-11.2
36	Valve seal	Canned fluoric rubber	4	CR-18F	CR-18F	CR-18F	CR-22F
Packing set	Double acting single rod cylinder		1 set	NH8/PKS3 -125A	NH8/PKS3 -140A	NH8/PKS3 -150A	NH8/PKS3 -160A

• The O-rings conform to JIS B2401-4D (Hs70).

Note 1) The parts code of the cushion valve seal ④ applicable to the TA type rod cover of a 100 mm bore is CR-18F, and the check valve seal ④ applicable to the same is CF-18F. The O-ring for cushion valve ⑤, S-7 is required for this type. The packing set for the 100 mm bore type includes 2 pcs. of the CR-18F and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

#### Standard type/6 hydrogenated nitrile rubber (rod A/semi-standard) / 70H-8, 140H-8

Na	Dente memo	Material	0.444	Parts code					
NO.	Parts name		Qity	<i>ϕ</i> 40	<i>φ</i> 50	<i>ф</i> 63	<i>\</i> \$80	<i>φ</i> 100	
<b>2</b> 5	Piston packing	Hydrogenated nitrile rubber	2	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100	
Ð	Rod packing	Hydrogenated nitrile rubber	1	UHR-28	UHR-35.5	UHR-45	UHR-56	UHR-71	
<b>Ø</b>	Dust wiper	Hydrogenated nitrile rubber	1	DHS-28	DHS-35.5	DHS-45	DHS-56	DHS-71	
Ø	Cover seal	Hydrogenated nitrile rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100	
6)	O-ring for piston rod	Hydrogenated nitrile rubber	1	S-20	S-25	P-35.5	G-45	G-55	
3	O-ring for cushion ring	Hydrogenated nitrile rubber	1	S-22.4	S-28	S-35.5	S-45	S-56	
63	O-ring for bush	Hydrogenated nitrile rubber	1	G-30	G-40	G-50	G-60	G-75	
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	
6)	O-ring for cushion valve	Hydrogenated nitrile rubber	2	_	_			_	
66	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	
Packing set	Double acting single rod cylinder		1 set	NH8/PKS6 -040A	NH8/PKS6 -050A	NH8/PKS6 -063A	NH8/PKS6 -080A	NH8/PKS6 -100A	

м.	Denteman		01	Parts code				
NO.	Parts name	Material	Qʻty	<i>ф</i> 125	<i>ф</i> 140	<i>ф</i> 150	<i>ф</i> 160	
Ø	Piston packing	Hydrogenated nitrile rubber	2	UHP-125	UHP-140	UHP-150	UHP-160	
Ð	Rod packing	Hydrogenated nitrile rubber	1	UHR-90	UHR-100	UHR-100	UHR-112	
<b>Ø</b>	Dust wiper	Hydrogenated nitrile rubber	1	DHS-90	DHS-100	DHS-100	DHS-112	
Ø	Cover seal	Hydrogenated nitrile rubber	2	TT-125	TT-140	TT-150	TT-160	
6)	O-ring for piston rod	Hydrogenated nitrile rubber	1	G-65	G-70	G-75	G-80	
Ð	O-ring for cushion ring	Hydrogenated nitrile rubber	1	G-65	G-75	G-80	G-85	
63	O-ring for bush	Hydrogenated nitrile rubber	1	G-95	G-110	G-110	G-125	
34	Valve seal	Canned hydrogenated nitrile rubber	2	CR-18H	CR-18H	CR-18H	CR-22H	
6)	O-ring for cushion valve	Hydrogenated nitrile rubber	2	S-7	S-7	S-7	S-11.2	
<b>6</b> 5	Valve seal	Canned hydrogenated nitrile rubber	4	CR-18H	CR-18H	CR-18H	CR-22H	
Packing set	Double acting single rod cylinder		1 set	NH8/PKS6 -125A	NH8/PKS6 -140A	NH8/PKS6 -150A	NH8/PKS6 -160A	

• The hardness of the O-ring for cushion valve 🚯 is Hs 70, and that of other O-rings is Hs 90.

Note 1) The parts code of the cushion valve seal 🚱 and the check valve seal 🚱 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🚱, S-7 is required for this type. The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.



Double acting single rod/switch set/70H-8R, 140H-8R (rod A, B, and C)

The detailed structure of the piston varies depending on the bore.

#### Enlarged drawing of B (cushion valve)



• Bore 0125 - 0140



#### Parts list

No.	Name	Material	Q'ty
0	Cylinder tube	Stainless steel	1
8	Rod cover	Carbon steel for machine structural use (\phi32 - \phi80) Structural rolled steel (\phi100 - \phi140)	1
4	Head cover	Carbon steel for machine structural use (\phi32 - \phi80) Structural rolled steel (\phi100 - \phi140)	1
6	Piston R	Special copper alloy	1
0	Piston H	Special copper alloy	1
8	Piston rod	Carbon steel for machine structural use	1
Ø	Bush	Copper alloy	1
0	Retainer	Carbon steel for machine structural use (\phi32 - \phi80) Structural rolled steel (\phi100 - \phi140)	1
Ø	Cushion ring	Cast iron	1
ß	Wear ring	Synthetic resin	2
Ø	Stop ring	Carbon steel for machine structural use	(1)
G	Magnet		_
Ø	Set screw	Chrome molybdenum steel	1
Ð	Cushion plug	Carbon steel for machine structural use	2
1	Cushion valve	Chrome molybdenum steel	2
Ø	Cushion lock nut	Structural rolled steel	2
Ø	Check plug	Carbon steel for machine structural use	4
Ø	Check spring	Piano wire	4
Ø	Check ball	High carbon chromium bearing steel	4
49	Tie rod	Carbon steel for machine structural use (7 MPa: for $\phi$ 63 - $\phi$ 140) Chrome molybdenum steel (7 MPa: for $\phi$ 32 - $\phi$ 50, 14 MPa)	4
Ø	Tie rod nut (type 2)	Carbon steel for machine structural use	8
Ð	Switch		_

• The quantities shown in the table above are applicable to the type with both ends cushioned.

• The item with the quantity in the ( ) mark may not be used depending on the bore and rod dia.

# 

- Precautions for fitting of valve seals (), ()
   The valve seals, () and (), must be fit in the specified direction and sequences. Wrong fitting direction and sequences will lead to the damaged packings, causing oil leak.
   Fitting sequences
  - ① Check the direction of a valve seal.
  - The marked side must be faced inside (refer to Fig.1). ② Fit the valve seal to the shaft of the cushion valve or the shaft
  - of the check plug in correct fitting direction (refer to Fig.2). ③ Take care to prevent the valve seal from being dropped, and
  - Inside care to prevent the valve seal from being dropped, and screw it in (refer to Fig.3).





Note If the seal is first fit in the cover hole, and then, it is screwed in, it may be damaged.

# Packing list Switch set/1 nitrile rubber (rod B) / 70H-8R, 140H-8R

70/140H-8

			0'44	Parts code					
NO.	Parts name	Material	Q'ty	<i>ø</i> 32	<i>φ</i> 40	<i>φ</i> 50	<i>ø</i> 63		
Ø	Piston packing	Nitrile rubber	2	UHP-32	SKY-30	SKY-40	SKY-53		
Ð	Rod packing	Nitrile rubber	1	SKY-18	SKY-22.4	SKY-28	SKY-35.5		
<b>2</b> 3	Dust wiper	Nitrile rubber	1	SDR-18	SDR-22.4	SDR-28	SDR-35.5		
Ø	Cover seal	Nitrile rubber	2	TT-32	TT-40	TT-50	TT-63		
6)	O-ring for piston rod	Nitrile rubber	1(2)	S-12.5	S-16	P-22	P-28		
•	O-ring for cushion ring	Nitrile rubber	1	S-16	S-22.4	S-28	S-35.5		
63	O-ring for bush	Nitrile rubber	1	P-22	G-25	G-30	G-40		
64	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-12H		
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2	—	—	—	_		
<b>(</b> )	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-12H		
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS1 -032B	NH8R/PKS1 -040B	NH8R/PKS1 -050B	NH8R/PKS1 -063B		

Nia	Dente nomo	Matarial	0'11	Parts code					
NO.	Parts name	Material	Qʻty	<i>\delta</i> 80	<i>φ</i> 100	<i>ø</i> 125	<i>φ</i> 140		
Ø	Piston packing	Nitrile rubber	2	SKY-71	SKY-85	SKY-112	SKY-125		
Ð	Rod packing	Nitrile rubber	1	SKY-45A	SKY-56	SKY-71	SKY-80		
<b>2</b> 3	Dust wiper	Nitrile rubber	1	SDR-45	SDR-56	SDR-71	SDR-80		
<b>(</b> )	Cover seal	Nitrile rubber	2	TT-80	TT-100	TT-125	TT-140		
6)	O-ring for piston rod	Nitrile rubber	1(2)	P-36	P-45	G-55	G-65		
•	O-ring for cushion ring	Nitrile rubber	1	S-45	S-56	G-65	G-75		
<b>(3)</b>	O-ring for bush	Nitrile rubber	1	G-50	G-60	G-75	G-85		
6	Valve seal	Canned hydrogenated nitrile rubber	2	CX-14H	Note 1) CX-14H	CR-18H	CR-18H		
\$5	O-ring for cushion valve	Hydrogenated nitrile rubber	2	—	—	S-7	S-7		
<b>(</b> )	Valve seal	Canned hydrogenated nitrile rubber	4	CX-14H	Note 1) CX-14H	CR-18H	CR-18H		
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS1 -080B	NH8R/PKS1 -100B	NH8R/PKS1 -125B	NH8R/PKS1 -140B		

• The O-rings conform to JIS B2401-1A.

• The quantities of the O-ring for a piston rod in the ( ) are applicable to the types of  $\phi$ 32 and  $\phi$ 40 bores.

• For the arrangement of the packing set including wear rings, refer to the code for the arrangement of packing sets.

Note 1) The parts code of the cushion valve seal ⁽¹⁾ and the check valve seal ⁽¹⁾ applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve ⁽¹⁾, S-7 is required for this type. The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

Sectional drawings

70/140H-8

	<b>_</b>		<b>.</b>	Parts code					
NO.	Parts name	Material	Q′ty	<i>φ</i> 32	<i>φ</i> 40	<i>φ</i> 50	<i>φ</i> 63		
Ø	Piston packing	Urethane rubber	2	Note 1) UHP-32	UHP-40	UHP-50	UHP-63		
æ	Rod packing Note 2)	l Irothono rubbor	1	ISI-18B	ISI-22.4B	ISI-28B	ISI-35.5B		
49				(UHR-18)	(UHR-22.4)	(UHR-28)	(UHR-35.5)		
<b>Ø</b>	Dust wiper	Urethane rubber	1	DHS-18	DHS-22.4	DHS-28	DHS-35.5		
0	Cover seal	Nitrile rubber	2	TT-32	TT-40	TT-50	TT-63		
6)	O-ring for piston rod	Nitrile rubber	1(2)	S-12.5	S-16	P-22	P-28		
3	O-ring for cushion ring	Nitrile rubber	1	S-16	S-22.4	S-28	S-35.5		
63	O-ring for bush	Nitrile rubber	1	P-22	G-25	G-30	G-40		
<b>34</b>	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-12H		
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2	—	—	—	—		
<b>36</b>	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-12H		
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS2 -032B	NH8R/PKS2 -040B	NH8R/PKS2 -050B	NH8R/PKS2 -063B		

# Switch set/2 urethane rubber (rod B) / 70H-8R, 140H-8R

Na	Dente nomo	Matorial	Matorial	0/111		Parts	code	
NO.	Parts name	Material	Qʻty	<i>\d</i> 80	<i>ø</i> 100	<i>φ</i> 125	<i>φ</i> 140	
Ø	Piston packing	Urethane rubber	2	UHP-80	UHP-100	UHP-125	UHP-140	
•	Ded a selvia a	l lastheas which as	1	ISI-45AB	ISI-56B	ISI-71AB	ISI-80B	
	ROD packing Note 2)	Urethane rubber		(UHR-45)	(UHR-56)	(UHR-71)	(UHR-80)	
23	Dust wiper	Urethane rubber	1	DHS-45	DHS-56	DHS-71	DHS-80	
€	Cover seal	Nitrile rubber	2	TT-80	TT-100	TT-125	TT-140	
6)	O-ring for piston rod	Nitrile rubber	1(2)	P-36	P-45	G-55	G-65	
3	O-ring for cushion ring	Nitrile rubber	1	S-45	S-56	G-65	G-75	
63	O-ring for bush	Nitrile rubber	1	G-50	G-60	G-75	G-85	
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-14H	Note 3) CX-14H	CR-18H	CR-18H	
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2	_	_	S-7	S-7	
<b>3</b> 6	Valve seal	Canned hydrogenated nitrile rubber	4	CX-14H	Note 3) CX-14H	CR-18H	CR-18H	
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS2 -080B	NH8R/PKS2 -100B	NH8R/PKS2 -125B	NH8R/PKS2 -140B	

• The O-rings conform to JIS B2401-1A.

• The quantities of the O-ring for a piston rod in the ( ~ ) are applicable to the types of  $\phi32$  and  $\phi40$  bores.

• For the arrangement of the packing set including wear rings, refer to the code for the arrangement of packing sets.

Note 1) The material of the piston packing of a bore of  $\varphi32$  is nitrile rubber.

Note 2) Rod seals ISI and UHR both are interchangeable with each other.

Note 3) The parts code of the cushion valve seal 🔮 and the check valve seal 🏵 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🚯, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

		Matorial	Matorial			Parts	code	
NO.	Parts name	Material	Qʻty	<i>ø</i> 32	<i>φ</i> 40	<i>φ</i> 50	<i>φ</i> 63	
Ø	Piston packing	Fluoric rubber	2	UHP-32	UHP-40	UHP-50	UHP-63	
Ð	Rod packing	Fluoric rubber	1	UHR-18	UHR-22.4	UHR-28	UHR-35.5	
<b>Ø</b>	Dust wiper	Fluoric rubber	1	DHS-18	DHS-22.4	DHS-28	DHS-35.5	
Ø	Cover seal	Fluoric rubber	2	TT-32	TT-40	TT-50	TT-63	
6)	O-ring for piston rod	Fluoric rubber	1(2)	S-12.5	S-16	P-22	P-28	
•	O-ring for cushion ring	Fluoric rubber	1	S-16	S-22.4	S-28	S-35.5	
63	O-ring for bush	Fluoric rubber	1	P-22	G-25	G-30	G-40	
64	Valve seal	Canned fluoric rubber	2	CX-12F	CX-12F	CX-12F	CX-12F	
<b>(</b> )	O-ring for cushion valve	Fluoric rubber	2		_			
<b>36</b>	Valve seal	Canned fluoric rubber	4	CX-12F	CX-12F	CX-12F	CX-12F	
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS3 -032B	NH8R/PKS3 -040B	NH8R/PKS3 -050B	NH8R/PKS3 -063B	

# Switch set/3 fluoric rubber (rod B/semi-standard) / 70H-8R, 140H-8R

70/140H-8

	Dente	Martanial	016	Parts code				
NO.	Parts name	Material	Qly	<i>\phi</i> 80	<i>ø</i> 100	<i>φ</i> 125	<i>φ</i> 140	
Ø	Piston packing	Fluoric rubber	2	UHP-80	UHP-100	UHP-125	UHP-140	
Ð	Rod packing	Fluoric rubber	1	UHR-45	UHR-56	UHR-71	UHR-80	
<b>2</b> 3	Dust wiper	Fluoric rubber	1	DHS-45	DHS-56	DHS-71	DHS-80	
Ø	Cover seal	Fluoric rubber	2	TT-80	TT-100	TT-125	TT-140	
6)	O-ring for piston rod	Fluoric rubber	1(2)	P-36	P-45	G-55	G-65	
3	O-ring for cushion ring	Fluoric rubber	1	S-45	S-56	G-65	G-75	
<b>(3)</b>	O-ring for bush	Fluoric rubber	1	G-50	G-60	G-75	G-85	
34	Valve seal	Canned fluoric rubber	2	CX-14F	Note 1) CX-14F	CR-18F	CR-18F	
65	O-ring for cushion valve	Fluoric rubber	2	—	—	S-7	S-7	
<b>3</b> 5	Valve seal	Canned fluoric rubber	4	CX-14F	Note 1) CX-14F	CR-18F	CR-18F	
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS3 -080B	NH8R/PKS3 -100B	NH8R/PKS3 -125B	NH8R/PKS3 -140B	

• The O-rings conform to JIS B2401-4D (Hs70).

• The quantities of the O-ring for a piston rod in the ( ) are applicable to the types of  $\phi$ 32 and  $\phi$ 40 bores.

• For the arrangement of the packing set including wear rings, refer to the code for the arrangement of packing sets.

Note 1) The parts code of the cushion valve seal ⁽¹⁾/₍₂₎ and the check valve seal ⁽¹⁾/₍₂₎ applicable to the TA type rod cover of a 100 mm bore is CR-18F. The O-ring for cushion valve ⁽¹⁾/₍₂₎, S-7 is required for this type. The packing set for the 100 mm bore type includes 2 pcs. of the CR-18F and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

70/140H-8

		Meterial	Q'ty	Parts code					
NO.	Parts name	Material		<i>φ</i> 32	<i>φ</i> 40	<i>φ</i> 50	<i>ø</i> 63		
Ø	Piston packing	Hydrogenated nitrile rubber	2	UHP-32	UHP-40	UHP-50	UHP-63		
Ð	Rod packing	Hydrogenated nitrile rubber	1	UHR-18	UHR-22.4	UHR-28	UHR-35.5		
<b>Q</b> 3	Dust wiper	Hydrogenated nitrile rubber	1	DHS-18	DHS-22.4	DHS-28	DHS-35.5		
Ø	Cover seal	Hydrogenated nitrile rubber	2	TT-32	TT-40	TT-50	TT-63		
6)	O-ring for piston rod	Hydrogenated nitrile rubber	1(2)	S-12.5	S-16	P-22	P-28		
<b>3</b>	O-ring for cushion ring	Hydrogenated nitrile rubber	1	S-16	S-22.4	S-28	S-35.5		
63	O-ring for bush	Hydrogenated nitrile rubber	1	P-22	G-25	G-30	G-40		
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-12H		
6)	O-ring for cushion valve	Hydrogenated nitrile rubber	2	—	—	—	—		
<b>6</b> 5	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-12H		
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS6 -032B	NH8R/PKS6 -040B	NH8R/PKS6 -050B	NH8R/PKS6 -063B		

#### Switch set/6 hydrogenated nitrile rubber (rod B/semi-standard) / 70H-8R, 140H-8R

Na	Dente viene	Matarial	0.4	Parts code						
NO.	Parts name	Material	Qʻty	<i>ø</i> 80	<i>φ</i> 100	<i>φ</i> 125	<i>ф</i> 140			
Ø	Piston packing	Hydrogenated nitrile rubber	2	UHP-80	UHP-100	UHP-125	UHP-140			
Ð	Rod packing	Hydrogenated nitrile rubber	1	UHR-45	UHR-56	UHR-71	UHR-80			
<b>Ø</b>	Dust wiper	Hydrogenated nitrile rubber	1	DHS-45	DHS-56	DHS-71	DHS-80			
Ø	Cover seal	Hydrogenated nitrile rubber	2	TT-80	TT-100	TT-125	TT-140			
6)	O-ring for piston rod	Hydrogenated nitrile rubber	1(2)	P-36	P-45	G-55	G-65			
Ø	O-ring for cushion ring	Hydrogenated nitrile rubber	1	S-45	S-56	G-65	G-75			
<b>3</b>	O-ring for bush	Hydrogenated nitrile rubber	1	G-50	G-60	G-75	G-85			
<b>3</b>	Valve seal	Canned hydrogenated nitrile rubber	2	CX-14H	Note 1) CX-14H	CR-18H	CR-18H			
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2	—	—	S-7	S-7			
<b>()</b>	Valve seal	Canned hydrogenated nitrile rubber	4	CX-14H	Note 1) CX-14H	CR-18H	CR-18H			
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS6 -080B	NH8R/PKS6 -100B	NH8R/PKS6 -125B	NH8R/PKS6 -140B			

• The hardness of the O-ring for piston rod S-12.5 ④ of a bore of  $\phi$ 32 and the O-ring for cushion valve ④ is Hs 70, and that of other O-rings is Hs 90.

• The quantities of the O-ring for a piston rod in the ( ) are applicable to the types of  $\phi$ 32 and  $\phi$ 40 bores.

• For the arrangement of the packing set including wear rings, refer to the code for the packing set arrangement.

Note 1) The parts code of the cushion valve seal 🕲 and the check valve seal 🕲 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🕲, S-7 is required for this type. The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

# Packing list Switch set/1 nitrile rubber (rod C) / 70H-8R, 140H-8R

	_		Q'ty	Parts code								
NO.	Parts name	Material	Q'ty	<i>φ</i> 40	<i>φ</i> 50	<i>ø</i> 63	<i>ø</i> 80	<i>φ</i> 100	<i>ф</i> 125	<i>ф</i> 140		
Ø	Piston packing	Nitrile rubber	2	SKY-30	SKY-40	SKY-53	SKY-71	SKY-85	SKY-112	SKY-125		
Ð	Rod packing	Nitrile rubber	1	SKY-18	SKY-22.4	SKY-28	SKY-35.5	SKY-45A	SKY-56	SKY-63		
<b>Ø</b>	Dust wiper	Nitrile rubber	1	SDR-18	SDR-22.4	SDR-28	SDR-35.5	SDR-45	SDR-56	SDR-63		
Ø	Cover seal	Nitrile rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125	TT-140		
6)	O-ring for piston rod	Nitrile rubber	1	P-15	P-18	P-24	P-30	P-36	P-45	P-50		
•	O-ring for cushion ring	Nitrile rubber	1	P-18	P-22.4	P-28	P-35.5	G-45	G-55	G-60		
<b>(3)</b>	O-ring for bush	Nitrile rubber	1	G-25	G-30	G-40	G-50	G-60	G-75	G-85		
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H	CR-18H		
69	O-ring for cushion valve	Hydrogenated nitrile rubber	2			_	_		S-7	S-7		
<b>S</b> 6	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H	CR-18H		
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS1 -040C	NH8R/PKS1 -050C	NH8R/PKS1 -063C	NH8R/PKS1 -080C	NH8R/PKS1 -100C	NH8R/PKS1 -125C	NH8R/PKS1 -140C		

• The O-rings conform to JIS B2401-1A.

• For the arrangement of the packing set including wear rings, refer to the code for the packing set arrangement.

Note 1) The parts code of the cushion valve seal 🚱 and the check valve seal 🕲 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🕲, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

#### Switch set/2 urethane rubber (rod C) / 70H-8R, 140H-8R

	-		Parts code							
NO.	Parts name	Material	Qʻty	<i>φ</i> 40	<i>φ</i> 50	<i>φ</i> 63	<i>ø</i> 80	<i>φ</i> 100	<i>ф</i> 125	<i>ϕ</i> 140
Ø	Piston packing	Urethane rubber	2	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100	UHP-125	UHP-140
A	Pod pooking	Lirothana rubhar	4	ISI-18B	ISI-22.4B	ISI-28B	ISI-35.5B	ISI-45AB	ISI-56B	ISI-63B
Y	Note 1)			(UHR-18)	(UHR-22.4)	(UHR-28)	(UHR-35.5)	(UHR-45)	(UHR-56)	(UHR-63)
23	Dust wiper	Urethane rubber	1	DHS-18	DHS-22.4	DHS-28	DHS-35.5	DHS-45	DHS-56	DHS-63
Ø	Cover seal	Nitrile rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125	TT-140
6)	O-ring for piston rod	Nitrile rubber	1	P-15	P-18	P-24	P-30	P-36	P-45	P-50
Ð	O-ring for cushion ring	Nitrile rubber	1	P-18	P-22.4	P-28	P-35.5	G-45	G-55	G-60
63	O-ring for bush	Nitrile rubber	1	G-25	G-30	G-40	G-50	G-60	G-75	G-85
64	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-14H	Note 2) CX-14H	CR-18H	CR-18H
69	O-ring for cushion valve	Hydrogenated nitrile rubber	2	_	_	—	_	—	S-7	S-7
60	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-14H	Note 2) CX-14H	CR-18H	CR-18H
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS2 -040C	NH8R/PKS2 -050C	NH8R/PKS2 -063C	NH8R/PKS2 -080C	NH8R/PKS2 -100C	NH8R/PKS2 -125C	NH8R/PKS2 -140C

• The O-rings conform to JIS B2401-1A.

• For the arrangement of the packing set including wear rings, refer to the code for the packing set arrangement.

Note 1) Rod seals ISI and UHR both are interchangeable with each other.

Note 2) The parts code of the cushion valve seal 🔮 and the check valve seal 🏵 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🕲, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

70/140H-8

	_		Q'ty	Parts code							
No.	Parts name	Material	Q'ty	<i>φ</i> 40	<i>φ</i> 50	<i>φ</i> 63	<i>ø</i> 80	<i>φ</i> 100	<i>ф</i> 125	<i>ф</i> 140	
Ø	Piston packing	Fluoric rubber	2	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100	UHP-125	UHP-140	
Ø	Rod packing	Fluoric rubber	1	UHR-18	UHR-22.4	UHR-28	UHR-35.5	UHR-45	UHR-56	UHR-63	
<b>Ø</b>	Dust wiper	Fluoric rubber	1	DHS-18	DHS-22.4	DHS-28	DHS-35.5	DHS-45	DHS-56	DHS-63	
Ø	Cover seal	Fluoric rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125	TT-140	
6)	O-ring for piston rod	Fluoric rubber	1	P-15	P-18	P-24	P-30	P-36	P-45	P-50	
Ð	O-ring for cushion ring	Fluoric rubber	1	P-18	P-22.4	P-28	P-35.5	G-45	G-55	G-60	
3	O-ring for bush	Fluoric rubber	1	G-25	G-30	G-40	G-50	G-60	G-75	G-85	
34	Valve seal	Canned fluoric rubber	2	CX-12F	CX-12F	CX-12F	CX-14F	Note 1) CX-14F	CR-18F	CR-18F	
69	O-ring for cushion valve	Fluoric rubber	2	—	_	—	_	_	S-7	S-7	
<b>3</b> 6	Valve seal	Canned fluoric rubber	4	CX-12F	CX-12F	CX-12F	CX-14F	Note 1) CX-14F	CR-18F	CR-18F	
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS3 -040C	NH8R/PKS3 -050C	NH8R/PKS3 -063C	NH8R/PKS3 -080C	NH8R/PKS3 -100C	NH8R/PKS3 -125C	NH8R/PKS3 -140C	

#### Switch set/3 fluoric rubber (rod C/semi-standard) / 70H-8R, 140H-8R

• The O-rings conform to JIS B2401-4D (Hs70).

• For the arrangement of the packing set including wear rings, refer to the code for the packing set arrangement.

Note 1) The parts code of the cushion valve seal 🚱 and the check valve seal 🚱 applicable to the TA type rod cover of a 100 mm bore is CR-18F. The O-ring for cushion valve 🚱, S-7 is required for this type. The packing set for the 100 mm bore type includes 2 pcs. of the CR-18F and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

#### Switch set/6 hydrogenated nitrile rubber (rod C/semi-standard) / 70H-8R, 140H-8R

		Parts name Material Q			Parts code							
NO.	Parts name	Material	Q′ty	<i>φ</i> 40	<i>φ</i> 50	<i>ø</i> 63	<i>ø</i> 80	<i>ф</i> 100	<i>ф</i> 125	<i>ф</i> 140		
Ø	Piston packing	Hydrogenated nitrile rubber	2	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100	UHP-125	UHP-140		
Ð	Rod packing	Hydrogenated nitrile rubber	1	UHR-18	UHR-22.4	UHR-28	UHR-35.5	UHR-45	UHR-56	UHR-63		
<b>Ø</b>	Dust wiper	Hydrogenated nitrile rubber	1	DHS-18	DHS-22.4	DHS-28	DHS-35.5	DHS-45	DHS-56	DHS-63		
Ø	Cover seal	Hydrogenated nitrile rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125	TT-140		
6)	O-ring for piston rod	Hydrogenated nitrile rubber	1	P-15	P-18	P-24	P-30	P-36	P-45	P-50		
3	O-ring for cushion ring	Hydrogenated nitrile rubber	1	P-18	P-22.4	P-28	P-35.5	G-45	G-55	G-60		
63	O-ring for bush	Hydrogenated nitrile rubber	1	G-25	G-30	G-40	G-50	G-60	G-75	G-85		
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H	CR-18H		
6)	O-ring for cushion valve	Hydrogenated nitrile rubber	2	—	—	—		_	S-7	S-7		
65	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H	CR-18H		
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS6 -040C	NH8R/PKS6 -050C	NH8R/PKS6 -063C	NH8R/PKS6 -080C	NH8R/PKS6 -100C	NH8R/PKS6 -125C	NH8R/PKS6 -140C		

• The hardness of the O-ring for cushion valve  ${f I}$  is Hs70, and that of other O-ring is Hs90.

• For the arrangement of the packing set including wear rings, refer to the code for the packing set arrangement.

Note 1) The parts code of the cushion valve seal 🚱 and the check valve seal 🚱 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🚯, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

# Packing list Switch set/1 nitrile rubber (rod A) / 70H-8R, 140H-8R

	_					Parts	code		
NO.	Parts name	Material	Q'ty	<i>φ</i> 40	<i>φ</i> 50	<i>ø</i> 63	<i>ø</i> 80	<i>φ</i> 100	<i>ф</i> 125
<b>2</b> 5	Piston packing	Nitrile rubber	2	SKY-30	SKY-40	SKY-53	SKY-71	SKY-85	SKY-112
Ð	Rod packing	Nitrile rubber	1	SKY-28	SKY-35.5	SKY-45A	SKY-56	SKY-71	SKY-90
<b>2</b> 8	Dust wiper	Nitrile rubber	1	SDR-28	SDR-35.5	SDR-45	SDR-56	SDR-71	SDR-90
Ø	Cover seal	Nitrile rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125
6)	O-ring for piston rod	Nitrile rubber	1(2)	S-16	P-22	P-28	P-36	P-45	G-55
<b>3</b>	O-ring for cushion ring	Nitrile rubber	1	S-22.4	S-28	S-35.5	S-45	S-56	G-65
<b>(3)</b>	O-ring for bush	Nitrile rubber	1	G-30	G-40	G-50	G-60	G-75	G-95
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2						S-7
<b>36</b>	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS1 -040A	NH8R/PKS1 -050A	NH8R/PKS1 -063A	NH8R/PKS1 -080A	NH8R/PKS1 -100A	NH8R/PKS1 -125A

• The O-rings conform to JIS B2401-1A.

• The parenthetic quantities of piston rod O-ring are for 32mm and 40mm bore.

• For the arrangement of the packing set including wear rings, refer to the code for the packing set arrangement.

Note 1) The parts code of the cushion valve seal 🔮 and the check valve seal 🏵 applicable to the TA type cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🗐, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

# Switch set/2 urethane rubber (rod A) / 70H-8R, 140H-8R

						Parts	code		
No.	Parts name	Material	Q'ty	<i>φ</i> 40	<i>φ</i> 50	<i>\$</i> 63	<i>\$</i> 80	<i>φ</i> 100	<i>ф</i> 125
Ø	Piston packing	Urethane rubber	2	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100	UHP-125
•	Deducation	l lasth sa sa mah han		ISI-28B	ISI-35.5B	ISI-45AB	ISI-56B	ISI-71AB	ISI-90B
Y	ROD packing Note 1)	Urethane rubber		(UHR-28)	(UHR-35.5)	(UHR-45)	(UHR-56)	(UHR-71)	(UHR-90)
23	Dust wiper	Urethane rubber	1	DHS-28	DHS-35.5	DHS-45	DHS-56	DHS-71	DHS-90
Ø	Cover seal	Nitrile rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125
6)	O-ring for piston rod	Nitrile rubber	1	S-16	P-22	P-28	P-36	P-45	G-55
3	O-ring for cushion ring	Nitrile rubber	1	S-22.4	S-28	S-35.5	S-45	S-56	G-65
<b>(3)</b>	O-ring for bush	Nitrile rubber	1	G-30	G-40	G-50	G-60	G-75	G-95
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-14H	Note 2) CX-14H	CR-18H
69	O-ring for cushion valve	Hydrogenated nitrile rubber	2	_			_	—	S-7
<b>3</b> 6	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-14H	Note 2) CX-14H	CR-18H
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS2 -040A	NH8R/PKS2 -050A	NH8R/PKS2 -063A	NH8R/PKS2 -080A	NH8R/PKS2 -100A	NH8R/PKS2 -125A

• The O-rings conform to JIS B2401-1A.

• The parenthetic quantities of piston rod O-ring are for 32mm and 40mm bore.

• For the arrangement of the packing set including wear rings, refer to the code for the packing set arrangement.

Note 1) Rod seals ISI and UHR both are interchangeable with each other.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

Note 2) The parts code of the cushion valve seal 🚱 and the check valve seal 🚱 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🚯, S-7 is required for this type.

						Parts	code	le			
NO.	Parts name	Material	Q′ty	<i>φ</i> 40	<i>φ</i> 50	<i>φ</i> 63	<i>ø</i> 80	<i>φ</i> 100	<i>ф</i> 125		
Ø	Piston packing	Fluoric rubber	2	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100	UHP-125		
Ð	Rod packing	Fluoric rubber	1	UHR-28	UHR-35.5	UHR-45	UHR-56	UHR-71	UHR-90		
<b>Ø</b>	Dust wiper	Fluoric rubber	1	DHS-28	DHS-35.5	DHS-45	DHS-56	DHS-71	DHS-90		
Ø	Cover seal	Fluoric rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125		
6)	O-ring for piston rod	Fluoric rubber	1(2)	S-16	P-22	P-28	P-36	P-45	G-55		
Ð	O-ring for cushion ring	Fluoric rubber	1	S-22.4	S-28	S-35.5	S-45	S-56	G-65		
63	O-ring for bush	Fluoric rubber	1	G-30	G-40	G-50	G-60	G-75	G-95		
<b>34</b>	Valve seal	Canned fluoric rubber	2	CX-12F	CX-12F	CX-12F	CX-14F	Note 1) CX-14F	CR-18F		
69	O-ring for cushion valve	Fluoric rubber	2	—	_	—	_	—	S-7		
<b>3</b> 6	Valve seal	Canned fluoric rubber	4	CX-12F	CX-12F	CX-12F	CX-14F	Note 1) CX-14F	CR-18F		
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS3 -040A	NH8R/PKS3 -050A	NH8R/PKS3 -063A	NH8R/PKS3 -080A	NH8R/PKS3 -100A	NH8R/PKS3 -125A		

#### Switch set/3 fluoric rubber (rod A/semi-standard) / 70H-8R, 140H-8R

• The O-rings conform to JIS B2401-4D (Hs70).

• For the arrangement of the packing set including wear rings, refer to the code for the packing set arrangement.

• The parenthetic quantities of piston rod O-ring are for 32mm and 40mm bore.

Note 1) The parts code of the cushion valve seal 🚱 and the check valve seal 🚱 applicable to the TA type rod cover of a 100 mm bore is CR-18F. The O-ring for cushion valve 🗐, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18F and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

#### Switch set/6 hydrogenated nitrile rubber (rod A/semi-standard) / 70H-8R, 140H-8R

						Parts	code		
No.	Parts name	Material	Q'ty	<i>φ</i> 40	<i>φ</i> 50	<i>φ</i> 63	<i>\$</i> 80	<i>φ</i> 100	<i>ф</i> 125
Ø	Piston packing	Hydrogenated nitrile rubber	2	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100	UHP-125
Ð	Rod packing	Hydrogenated nitrile rubber	1	UHR-28	UHR-35.5	UHR-45	UHR-56	UHR-71	UHR-90
<b>Ø</b>	Dust wiper	Hydrogenated nitrile rubber	1	DHS-28	DHS-35.5	DHS-45	DHS-56	DHS-71	DHS-90
Ø	Cover seal	Hydrogenated nitrile rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125
6)	O-ring for piston rod	Hydrogenated nitrile rubber	1(2)	S-16	P-22	P-28	P-36	P-45	G-55
<b>Ø</b>	O-ring for cushion ring	Hydrogenated nitrile rubber	1	S-22.4	S-28	S-35.5	S-45	S-56	G-65
63	O-ring for bush	Hydrogenated nitrile rubber	1	G-30	G-40	G-50	G-60	G-75	G-95
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H
6)	O-ring for cushion valve	Hydrogenated nitrile rubber	2	—	_	—	—	—	S-7
<b>6</b> 5	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H
Packing set	Double acting single rod cylinder		1 set	NH8R/PKS6 -040A	NH8R/PKS6 -050A	NH8R/PKS6 -063A	NH8R/PKS6 -080A	NH8R/PKS6 -100A	NH8R/PKS6 -125A

• The hardness of the O-ring for cushion valve 🕲 is Hs70, and that of other O-ring is Hs90.

• For the arrangement of the packing set including wear rings, refer to the code for the packing set arrangement.

• The parenthetic quantities of piston rod O-ring are for 32mm and 40mm bore.

Note 1) The parts code of the cushion valve seal 🚱 and the check valve seal 🚱 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🕲, S-7 is required for this type. The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

Sectional drawings

Double acting single rod/cutting fluid proof type 70HW-8, 140HW-8, 70HW-8R, 140HW-8R (rod B/rod C)



- The detailed structure of the piston varies depending on the bore.
- Wiper-seal part is specially designed in order to prevent the invasion of foreign body.
- Switch set (piston structure)



The detailed structure of the piston varies depending on the bore. The structure of other sections is common to the standard type.

# Enlarged drawing of B (cushion valve)





#### Parts list

No.	Name	Material	Q'ty
0	Cylinder tube	Standard type: carbon steel for machine structural use Switch set: stainless steel	1
0	Rod cover	Carbon steel for machine structural use (\phi32 - \phi80) Structural rolled steel (\phi100 - \phi125)	1
4	Head cover	Carbon steel for machine structural use (\phi32 - \phi80) Structural rolled steel (\phi100 - \phi125)	1
6	Piston	Gray cast iron	1
6	Piston R	Special copper alloy	1
0	Piston H	Special copper alloy	1
8	Piston rod	Carbon steel for machine structural use	1
Ø	Bush	Copper alloy	1
0	Retainer	Carbon steel for machine structural use ( $\phi$ 32 - $\phi$ 80) Structural rolled steel ( $\phi$ 100 - $\phi$ 125)	1
Ø	Cushion ring	Cast iron	1
ß	Wear ring	Synthetic resin	2
Ø	Stop ring	Carbon steel for machine structural use	(1)
G	Magnet		—
Ø	Set screw	Chrome molybdenum steel	1
Ð	Cushion plug	Carbon steel for machine structural use	2
₿	Cushion valve	Chrome molybdenum steel	2
Ø	Cushion lock nut	Structural rolled steel	2
Ø	Check plug	Carbon steel for machine structural use	4
Ø	Check spring	Piano wire	4
@	Check ball	High carbon chromium bearing steel	4
Ø	Tie rod	Carbon steel for machine structural use (7 MPa: for $\phi$ 63 - $\phi$ 125) Chrome molybdenum steel (7 MPa: for $\phi$ 32 - $\phi$ 50, 14 MPa)	4
Ø	Tie rod nut (type 2)	Carbon steel for machine structural use	8
Ð	Switch		_

• The quantities shown in the table above are applicable to the type with both ends cushioned. • The item with the quantity in the ( ) mark may not be used depending on the bore and rod dia.

# 

- Precautions for fitting of valve seals (), ()
  - The valve seals, () and (), must be fit in the specified direction and sequences. Wrong fitting direction and sequences will lead to the damaged packings, causing oil leak.
  - Fitting sequences
  - ① Check the direction of a valve seal.
  - The marked side must be faced inside (refer to Fig.1).
  - $\ensuremath{\textcircled{}^\circ}$  Fit the valve seal to the shaft of the cushion valve or the shaft of the check plug in correct fitting direction (refer to Fig.2).
  - ③ Take care to prevent the valve seal from being dropped, and screw it in (refer to Fig.3).

Note If the seal is first fit in the cover hole, and then, it is screwed in, it may be damaged.



Fit with the marked side facing inside of the cylinder.

Fig.1



(Valve seal fitting sequences)

# Packing list Standard type/6cutting fluid proof type (rod B) / 70HW-8, 140HW-8

	_		Parts code							
No.	Parts name	Material	Q'ty	φ32	φ40	φ50	φ63	φ80	φ100	φ125
Ø	Piston packing	Hydrogenated nitrile rubber	2	UHP-32	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100	UHP-125
Ø	Rod packing	Hydrogenated nitrile rubber	1	UHR-18	UHR-22.4	UHR-28	UHR-35.5	UHR-45	UHR-56	UHR-71
<b>3</b> 8	Dust wiper 1	Canned hydrogenated nitrile rubber	1	(DYL-18)	(DYL-22.4)	(DYL-28)	(DYL-35.5)	(DYL-45)	(DYL-56)	(DYL-71)
<b>(</b> )	Dust wiper 2	Hydrogenated nitrile rubber	1	UMD-18	UMD-22.4	UMD-28	UMD-35.5	UMD-45	UMD-56	UMD-71
Ø	Cover seal	Hydrogenated nitrile rubber	2	TT-32	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125
6)	O-ring for piston rod	Hydrogenated nitrile rubber	1	S-14	S-20	S-25	P-35.5	G-45	G-55	G-65
•	O-ring for cushion ring	Hydrogenated nitrile rubber	1	S-16	S-22.4	S-28	S-35.5	S-45	S-56	G-65
63	O-ring for bush	Hydrogenated nitrile rubber	1	G-25	G-30	G-40	G-40	G-50	G-60	G-75
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2			_		_		S-7
<b>3</b> 6	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H
Packing set	Double acting single rod cylinder		1 set	NHW8/PKS6 -032B	NHW8/PKS6 -040B	NHW8/PKS6 -050B	NHW8/PKS6 -063B	NHW8/PKS6 -080B	NHW8/PKS6 -100B	NHW8/PKS6 -125B

• The hardness of the O-ring for cushion valve 🚯 is Hs 70, and that of other O-rings is Hs90.

• The dust wiper 1 🕲 is pressed in the bush to be incorporated with it, and cannot be replaced singly. When replacing, replace together with the bush.

Note 1) The parts code of the cushion valve seal 🔮 and the check valve seal 🌚 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🕲, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

70/1<u>40H-8</u>

#### Standard type/6 cutting fluid proof type (rod C) / 70HW-8, 140HW-8

			<b>.</b>			Parts	code		
NO.	Parts name	Material	Q′ty	φ40	φ50	φ63	φ80	φ100	φ125
<b>2</b> 5	Piston packing	Hydrogenated nitrile rubber	2	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100	UHP-125
Ð	Rod packing	Hydrogenated nitrile rubber	1	UHR-18	UHR-22.4	UHR-28	UHR-35.5	UHR-45	UHR-56
<b>3</b> 8	Dust wiper 1	Canned hydrogenated nitrile rubber	1	(DYL-22.4)	(DYL-28)	(DYL-35.5)	(DYL-45)	(DYL-56)	(DYL-71)
<b>3</b> ]	Dust wiper 2	Hydrogenated nitrile rubber	1	UMD-18	UMD-22.4	UMD-28	UMD-35.5	UMD-45	UMD-56
Ø	Cover seal	Hydrogenated nitrile rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125
6)	O-ring for piston rod	Hydrogenated nitrile rubber	1	P-18	P-22.4	P-28	P-35.5	G-45	G-55
3	O-ring for cushion ring	Hydrogenated nitrile rubber	1	P-18	P-22.4	P-28	P-35.5	G-45	G-55
63	O-ring for bush	Hydrogenated nitrile rubber	1	G-25	G-30	G-40	G-50	G-60	G-75
<b>34</b>	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2	—	_	—	—	—	S-7
<b>3</b> 6	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H
Packing set	Double acting single rod cylinder		1 set	NHW8/PKS6 -040C	NHW8/PKS6 -050C	NHW8/PKS6 -063C	NHW8/PKS6 -080C	NHW8/PKS6 -100C	NHW8/PKS6 -125C

• The hardness of the O-ring for cushion valve 🚯 is Hs 70, and that of other O-rings is Hs90.

• The dust wiper 1 🕲 is pressed in the bush to be incorporated with it, and cannot be replaced singly. When replacing, replace together with the bush.

Note 1) The parts code of the cushion valve seal 🚱 and the check valve seal 🕲 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🚯, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

				· · ·						
No.	Parts name	Material	Q'ty	Parts code						
				φ <b>3</b> 2	φ40	φ50	φ63	φ80	φ100	φ125
Ø	Piston packing	Hydrogenated nitrile rubber	2	UHP-32	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100	UHP-125
Ð	Rod packing	Hydrogenated nitrile rubber	1	UHR-18	UHR-22.4	UHR-28	UHR-35.5	UHR-45	UHR-56	UHR-71
<b>(</b> 3)	Dust wiper 1	Canned hydrogenated nitrile rubber	1	(DYL-18)	(DYL-22.4)	(DYL-28)	(DYL-35.5)	(DYL-45)	(DYL-56)	(DYL-71)
<b>()</b>	Dust wiper 2	Hydrogenated nitrile rubber	1	UMD-18	UMD-22.4	UMD-28	UMD-35.5	UMD-45	UMD-56	UMD-71
Ø	Cover seal	Hydrogenated nitrile rubber	2	TT-32	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125
6)	O-ring for piston rod	Hydrogenated nitrile rubber	1(2)	S-12.5	S-16	P-22	P-28	P-36	P-45	G-55
Ð	O-ring for cushion ring	Hydrogenated nitrile rubber	1	S-16	S-22.4	S-28	S-35.5	S-45	S-56	G-65
63	O-ring for bush	Hydrogenated nitrile rubber	1	G-25	G-30	G-40	G-40	G-50	G-60	G-75
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H
6)	O-ring for cushion valve	Hydrogenated nitrile rubber	2		_	_	_		_	S-7
<b>S</b> b	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H
Packing set	Double acting single rod cylinder		1 set	NHW8R/PKS6 -032B	NHW8R/PKS6 -040B	NHW8R/PKS6 -050B	NHW8R/PKS6 -063B	NHW8R/PKS6 -080B	NHW8R/PKS6 -100B	NHW8R/PKS6 -125B

#### Switch set/6 cutting fluid proof type (rod B) / 70HW-8R, 140HW-8R

• The hardness of the O-ring for piston rod S-12.5 of a bore of  $\phi$ 32 🚯 and the O-ring for cushion value 🚯 is Hs 70, and that of other O-rings is Hs 90.

 $\bullet$  The quantities of the O-ring for piston rod in the ( ~ ) are applicable to the types of  $\phi32$  and  $\phi40$  bores.

• For the arrangement of the packing set including wear rings, refer to the code for the packing set arrangement.

• The dust wiper 1 🚳 is pressed in the bush to be incorporated with it, and cannot be replaced singly. When replacing, replace together with the bush.

Note 1) The parts code of the cushion valve seal 🚱 and the check valve seal 🚱 applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve 🚯, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

Note The nominal code of packings may be changed.

# Switch set/6 cutting fluid proof type (rod C) / 70HW-8R, 140HW-8R

No.	Parts name	Material	Q'ty	Parts code						
				φ40	φ50	φ <b>6</b> 3	φ80	φ <b>1</b> 00	φ125	
Ø	Piston packing	Hydrogenated nitrile rubber	2	UHP-40	UHP-50	UHP-63	UHP-80	UHP-100	UHP-125	
Ð	Rod packing	Hydrogenated nitrile rubber	1	UHR-18	UHR-22.4	UHR-28	UHR-35.5	UHR-45	UHR-56	
<b>(3)</b>	Dust wiper 1	Canned hydrogenated nitrile rubber	1	(DYL-22.4)	(DYL-28)	(DYL-35.5)	(DYL-45)	(DYL-56)	(DYL-71)	
<b>()</b>	Dust wiper 2	Hydrogenated nitrile rubber	1	UMD-18	UMD-22.4	UMD-28	UMD-35.5	UMD-45	UMD-56	
Ø	Cover seal	Hydrogenated nitrile rubber	2	TT-40	TT-50	TT-63	TT-80	TT-100	TT-125	
6)	O-ring for piston rod	Hydrogenated nitrile rubber	1	P-15	P-18	P-24	P-30	P-36	P-45	
Ð	O-ring for cushion ring	Hydrogenated nitrile rubber	1	P-18	P-22.4	P-28	P-35.5	G-45	G-55	
3	O-ring for bush	Hydrogenated nitrile rubber	1	G-25	G-30	G-40	G-50	G-60	G-75	
34	Valve seal	Canned hydrogenated nitrile rubber	2	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H	
65	O-ring for cushion valve	Hydrogenated nitrile rubber	2	_		_		—	S-7	
<b>S</b> D	Valve seal	Canned hydrogenated nitrile rubber	4	CX-12H	CX-12H	CX-12H	CX-14H	Note 1) CX-14H	CR-18H	
Packing set	Double acting single rod cylinder		1 set	NHW8R/PKS6 -040C	NHW8R/PKS6 -050C	NHW8R/PKS6 -063C	NHW8R/PKS6 -080C	NHW8R/PKS6 -100C	NHW8R/PKS6 -125C	

• The hardness of the O-ring for cushion valve 0 is Hs 70, and that of other O-rings is Hs90.

The dust wiper 1 ⁽¹⁾ is pressed in the bush to be incorporated with it, and cannot be replaced singly. When replacing, replace together with the bush.
 Note 1) The parts code of the cushion valve seal ⁽¹⁾ and the check valve seal ⁽¹⁾ applicable to the TA type rod cover of a 100 mm bore is CR-18H. The O-ring for cushion valve ⁽³⁾, S-7 is required for this type.

The packing set for the 100 mm bore type includes 2 pcs. of the CR-18H and 1 pce. of the S-7.

For further information, please contact:



#### **OSAKA OFFICE**

1-1-1, Kitaeguchi, Higashiyodogawa-ku, Osaka 533-0002, Japan PHONE : (06) 6340-3090 FAX : (06) 6340-9508

#### **TOKYO OFFICE**

Imaasa Bldg., 1-1-21 Higashi-Shimbashi, Minato-ku, Tokyo 105-0021, Japan PHONE : (03) 5568-6231 FAX : (03) 5568-6237

For further information, please contact:

# TAIYD AMERICA, INC.

URL:http://www.airpro-taiyo.com

**NASHVILLE OFFICE** 

Murfreesboro, TN 37127

Phone: 615/907-3355

Fax : 615/907-3390

2840 S. Church St. #G-705

#### CHICAGO HEAD OFFICE

800 North York Road Bensenville, IL 60106 Phone : 847/750/8811 Fax : 847/750/8817

#### SAN DIEGO OFFICE

6162 Mission Gorge Road # E San Diego, CA 92120 Phone : 619/521-9973 Fax : 619/521-9962

#### **COLUMBUS OFFICE**

2669 Sawbury Blvd. Columbus, OH 43235 Phone : 614/793-8995 Fax : 614/793-8980

Sep 2003

Specifications are subject to change without notice.

Cat. No.A00339.70/140H-8.1.1(R)