## 7MPa複動非等速形2段 テレスコピックシリンダ。 ●複動非等速形のテレスコシリンダです。 ●2段ストロークなので軸方向の取付スペースが小さ くなりました。

- ●両ストロークエンド固定クッション付です。
- ●等速回路構成によりほぼ等速に順次作動させること ができます。
- ●長年の販売実績があります。



#### シリンダ仕様

| 機       | 種    |   | 10形        | 20形                  | 30形                                               | 40形        | 50形          |  |  |  |
|---------|------|---|------------|----------------------|---------------------------------------------------|------------|--------------|--|--|--|
| シリンダ    | 1段   | Ħ | φ63        | φ90                  | φ110                                              | φ125       | φ140         |  |  |  |
| 内径 (mm) | 2段   | 目 | φ45        | φ45 φ65 φ80 φ90 φ100 |                                                   |            |              |  |  |  |
| 呼 び     | 圧    | カ |            |                      | 7MPa                                              |            |              |  |  |  |
| 最高許     | 容 圧  | カ | ロッドカ       | バー側:15N              | ∥Pa ヘッI                                           | ドカバー側:     | 9МРа         |  |  |  |
| 耐 圧     |      | カ | ロッドカ       | バー側:21N              | ∥Pa ヘッI                                           | ドカバー側:     | 14MPa        |  |  |  |
| 最 低 作   | 動 圧  | カ | ロッドカル      | バー側:0.6              | MPa ヘッl                                           | ヾカバー側:     | 0.3MPa       |  |  |  |
| 使 用 速   | 度範   | 囲 | 10~166mm/s | 10~150mm/s           | 10~140mm/s                                        | 10~128mm/s | 10~118mm/s   |  |  |  |
| 使 用 温   | 度範   | 囲 | 周囲温度:一     | 10~+50℃              | 油温:-5~+                                           | 80℃ (但し、湧  | ·<br>『結なきこと) |  |  |  |
| クッショ    | ン機   | 構 |            | 両側                   | 固定クッシ                                             | ョン         |              |  |  |  |
| 適合作     | 動    | 油 | (その他の作動)   | ,.                   | 役鉱物性作動<br>合は作動油との                                 |            | してください。)     |  |  |  |
| ね じ     | 公    | 差 |            |                      | JIS6g/6H                                          |            |              |  |  |  |
| ストローク長さ | きの許容 | 彦 | 16         |                      | 下 <sup>+2.8</sup> 1001<br>nm <sup>+3.6</sup> 2501 |            | U            |  |  |  |
| 支 持     | 形    | 式 | LA形・I      | LT形・FA形              | ・FB形・C                                            | A形・TA形     | ・TB形         |  |  |  |

- ●内部構造につきましては巻末の内部構造図を参照してください。
- ●シリンダ力の算出につきましては、70T-2シリンダ力の算出のページを参照して ください。

単位:mm

#### 用語説明

複動形2段テレスコ®シリンダ

#### 呼び圧力

呼称の便宜を図るためにシリンダに与える 圧力。

定められた条件の下で性能を保証する使用 圧力(定格圧力)と必ずしも一致しない。

#### 最高許容圧力

シリンダ内部に発生する圧力の許容できる 最高値(サージ圧力など)。

#### 耐圧力

呼び圧力に復帰したとき性能の低下をもた らさずに耐えねばならない試験圧力。

#### 最低作動圧力

無負荷で水平に設置されたシリンダが作動 する最低の圧力。

- 注) ●負荷の慣性によりシリンダ内に発生 する油圧力は最高許容圧力以内にし てください。
  - ●引側時に使用する場合、圧力は6MPa 以上を目安としてください。
  - ●使用速度範囲を下まわるとビビリや シャクリの動作を起こすことがあり ます。また使用速度範囲を超えると パッキンの早期摩耗が起こることが あり、クッション効果が損なわれます。

#### 標準ストローク製作範囲

|     | +12 : 11111 |
|-----|-------------|
| 機種  | ストローク       |
| 10形 | 50~1700     |
| 20形 | 50~2500     |
| 30形 | 50~3100     |
| 40形 | 50~3100     |
| 50形 | 50~3100     |
|     |             |

- ●上記は標準品として製作できる最大ストロークです。
- ●ロッドの座屈は選定資料の座屈表にて別途良否判定してください。 なお上表以上のストロークはご相談ください。

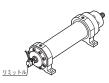
#### 作動油とパッキン材質の適合性

|          | 適合作動油        |                                 |   |                      |   |             |  |  |  |  |
|----------|--------------|---------------------------------|---|----------------------|---|-------------|--|--|--|--|
| パッキン 材 質 | 一般鉱物<br>性作動油 | 水-グライコー リン酸エステ<br>  ル系作動油 ル系作動油 |   | 酸エステ W/O<br>系作動油 作動油 |   | 脂肪酸<br>エステル |  |  |  |  |
| 11ニトリルゴム | 0            | 0                               | × | 0                    | 0 | 0           |  |  |  |  |
| 3 ふっ素ゴム  | 0            | ×                               | 0 | 0                    | 0 | 0           |  |  |  |  |


#### 注) ○印は使用可、×印は使用不可を示します。

#### テレスコ®シリンダの種類

#### 標準形 テレスコロッドスイッチ付(準標準) |




支持形式: LA·LT·FA·FB CA·TA·TB



最伸長時のストローク端位 置検出用

## リミットル付(準標準)

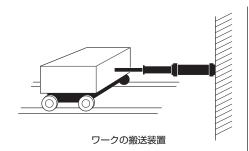


CA形を除く全ての支持形式 に取付けられます。最縮時 のストローク端位置検出用

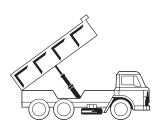
ストローク調整付(準標準)

CA形を除く全ての支持形式

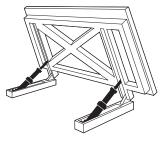
に取付けられます。 調整範囲:0~3mm


●標準のクッション機構はオリフィス形減衰機構です。 準標準として、クッション領域の長いものも用意しています。


#### クッションについて(固定クッション)


- ●両ストロークエンド端にストロークの短いオリフィス形減衰機構(ショックアブソーバ)を採用しました。また、押側の1段目 から2段目へと引側の2段目から1段目の間にも簡易形クッションを採用しています。
- Sクッション(準標準)は標準よりクッション行程の長さが長くなっています。
- ●クッションの調整はできません。

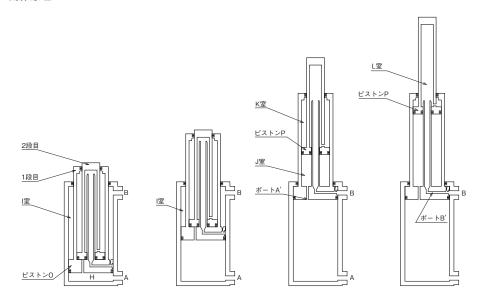
「テレスコ」、「リミットル」は当社の登録商標です。


#### 用途例








荷台の起伏装置



住宅建材起伏装置

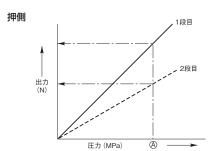
70T-2

#### 動作原理



#### 押側の場合

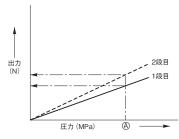
Aポートより流入した圧油は、H室に入りピストンO Bポートより流入した圧油は、ピストンOのポートB' に押し出し力を与え、1段目が作動する。同時に I 室 より、L室に流れピストンPに連結されたロッドの穴を の油はBポートから排出する。

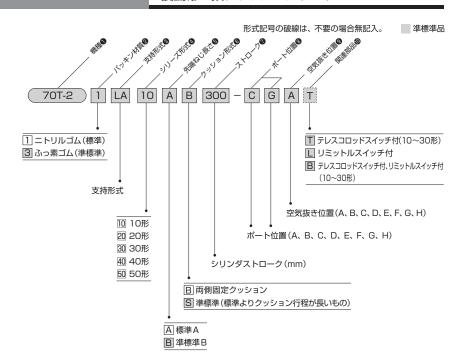

ピストン〇がロッドカバー側端に達すると圧油は、 ピストンOのポートA'よりJ室に入りピストンPに にJ室の油は、ポートA'を通りAポートから排出する。 力を与えて2段目が作動する。また同時にK室の油は、 ピストンPに連結されたロッドの穴よりL室に流れピ に入り、ピストンOのロッドカバー側に力を与え1段 ストン〇のポートB'よりBポートに戻り油として排 目が作動する。また同時に、H室の油はAポートから 出する。

#### 引側の場合

通りK室に流入する。K室に流入した圧油は、ピストン Pのロッドカバー側に力を与え2段目が作動する。同時

ピストンPがヘッドカバー側に達すると圧油は | 室 排出する。


#### 出力特性図




左図は、押側での1段目出力、2段目出力及び引側での 1段目出力、2段目出力の各特性を示します。

ある圧力A点でみると、明らかに1段目と2段目に 出力差が表われます。これは断面積の違いによるもの です。押側では1段目が大きく、引側では2段目が大 きいのがわかりますが、これで順次動作が確認できます。 押側では、1段目が作動し、それから2段目が作動しま す。引側では、2段目が作動し、1段目が作動します。







#### ☆ 標準仕様

- ●パッキン材質 ニトリルゴム
- ●クッション形式 両側固定クッション(オリフィス形 減衰機構付)
- ●ポート位置、空気抜き位置 支持形式 LA形·LT形

ポート位置C/G 空気抜き位置A

支持形式 FA形·FB形·CA形·TA形·TB形 ポート位置AE 空気抜き位置C

#### ★ 先端ねじ長さ(A寸法)

ピストンロッド先端ねじ長さ(A寸法)の長いものは準 標準Bの寸法にて製作が可能です。

#### 先端ねじ長さ(A寸法)

| 機種  | 標準A | 準標準B |
|-----|-----|------|
| 10形 | 25  | 35   |
| 20形 | 35  | 45   |
| 30形 | 40  | 55   |
| 40形 | 45  | 60   |
| 50形 | 52  | 72   |

#### <注意>

- ●ロックナット付の場合は、別途ご相談ください。
- ●使用状態によってロッド先端形状が特殊となる場合 があります。
- ●ストローク調整付の場合は、別途ご指示ください。 (準標準)

#### ★ ポート位置、空気抜き位置の指定

#### 支持形式 LA形·LT形



ポート位置の標準位置はCG、空気 抜き位置はAです。

位置変更の場合は、外形寸法図に表 示されている記号を記入してくださ

但し、テレスコロッドスイッチ付の 時はポート位置は©G、空気抜き位 置®になります。

#### 支持形式 FA形·FB形·CA形·TA形·TB形



単位:mm

ポート位置の標準位置はAE、空気 抜き位置は©です。

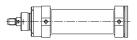
位置変更の場合は、外形寸法図に表 示されている記号を記入してくださ

但し、テレスコロッドスイッチ付の 時はポート位置CG、空気抜き位置 Eになります。

#### <注意>

"ポート位置とポート位置"あるいは、"ポート位置と空 気抜き位置"は、90°又は180°にふりわけて設定して ください。

#### 支持形式


#### LA LA形(フート形)

FB FB形(ヘッド側フランジ形)

複動形2段テレスコ®シリンダ

CA CA形(アイ形)







LT LT形 (フート形)


TA TA形(ロッド側トラニオン形)





FA FA形(ロッド側フランジ形)

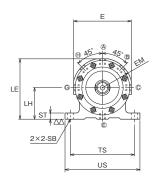
TB TB形(ヘッド側トラニオン形)

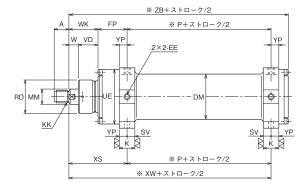




#### 質量表

単位・kg


|         |              |      |      |       |        |       |       |      | 主位・7.6   |
|---------|--------------|------|------|-------|--------|-------|-------|------|----------|
| <br>形 式 | 基本質量         |      |      |       | 支持金具質量 |       |       |      | ストローク1mm |
| /// IC  | <b>本</b> 中貝里 | LA形  | LT形  | TA形   | TB形    | FA形   | FB形   | CA形  | あたり加算質量  |
| 10形     | 5.7          | 0.44 | 0.37 | 1.08  | 1.08   | 0.93  | 0.93  | 0.32 | 0.0084   |
| 20形     | 15.4         | 1.25 | 1.05 | 3.06  | 3.06   | 2.85  | 2.85  | 0.91 | 0.0169   |
| 30形     | 27.0         | 2.29 | 1.93 | 5.61  | 5.61   | 4.88  | 4.88  | 1.66 | 0.0212   |
| 40形     | 41.4         | 3.52 | 2.22 | 8.64  | 8.64   | 7.43  | 7.43  | 2.56 | 0.0313   |
| 50形     | 57.2         | 4.92 | 4.14 | 11.99 | 11.99  | 10.24 | 10.24 | 3.55 | 0.0431   |
|         |              |      |      |       |        |       |       |      |          |


計算例 テレスコシリンダ30形 支持形式 FB形 ストローク 1500mmの場合 シリンダ質量(kg)=基本質量+支持金具質量+(ストローク×ストローク1mmあたりの加算質量) 27.0+4.88+ (1500×0.0212) =63.68kg

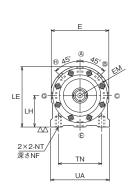
テレスコシリンダ

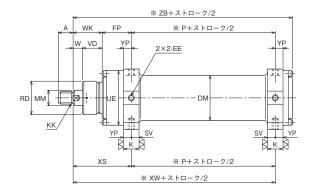
標準ポート位置 : ©⑤ 標準空気抜き位置: ㈜








## LT


テレスコシリンダ

70T-2

70T-2 1 LT シリーズ形式 A B ストローク - C G A

標準ポート位置 : © © 標準空気抜き位置: A



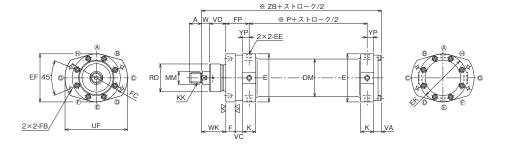


#### 寸法表

| 記号<br>機種 | Α  | D  | DM   | E   | EE    | EM  | FP  | НК    | К       |
|----------|----|----|------|-----|-------|-----|-----|-------|---------|
| 10形      | 25 | 24 | φ73  | 98  | Rc3/8 | 51  | 48  | φ21h9 | 26 -0.1 |
| 20形      | 35 | 32 | φ105 | 138 | Rc1/2 | 71  | 67  | φ30h9 | 34 -0.1 |
| 30形      | 40 | 41 | φ125 | 158 | Rc1/2 | 81  | 80  | φ36h9 | 42 -0.1 |
| 40形      | 45 | 46 | φ145 | 178 | Rc3/4 | 92  | 93  | φ42h9 | 47 0    |
| 50形      | 52 | 55 | φ165 | 196 | Rc3/4 | 100 | 107 | φ49h9 | 48 -0.1 |

| 記号 機種 | KK    | LE  | LH            | MM  | NF | NT  | *P | RD   | SB    | ST |
|-------|-------|-----|---------------|-----|----|-----|----|------|-------|----|
| 10形   | M24×2 | 99  | $50 \pm 0.2$  | φ27 | 18 | M12 | 25 | φ59  | φ13.5 | 10 |
| 20形   | M33×2 | 139 | $70 \pm 0.2$  | φ38 | 24 | M16 | 35 | φ84  | φ18   | 16 |
| 30形   | M39×2 | 164 | 85 ± 0.2      | φ45 | 30 | M20 | 40 | φ100 | φ22   | 20 |
| 40形   | M45×2 | 184 | 95 ± 0.2      | φ52 | 36 | M24 | 45 | φ112 | φ24   | 22 |
| 50形   | M52×2 | 203 | $105 \pm 0.2$ | φ59 | 36 | M24 | 50 | φ128 | φ26   | 24 |

| 記号<br>機種 | SV | TN  | TS  | UA  | UE    | US  | VD | W  | WK | xs  | ** XW | YP | ፠ ZB |
|----------|----|-----|-----|-----|-------|-----|----|----|----|-----|-------|----|------|
| 10形      | 13 | 75  | 110 | 98  | φ89.5 | 130 | 32 | 13 | 45 | 93  | 118   | 13 | 145  |
| 20形      | 17 | 105 | 150 | 138 | φ129  | 180 | 43 | 17 | 60 | 127 | 162   | 17 | 200  |
| 30形      | 22 | 115 | 175 | 158 | φ155  | 210 | 50 | 20 | 70 | 150 | 190   | 20 | 235  |
| 40形      | 23 | 130 | 205 | 178 | φ177  | 240 | 57 | 23 | 80 | 173 | 218   | 24 | 270  |
| 50形      | 23 | 150 | 230 | 196 | φ193  | 270 | 65 | 25 | 90 | 197 | 247   | 25 | 303  |


注) クッション形式 "S" の場合、※印寸法は5mm長くなります。

## FA

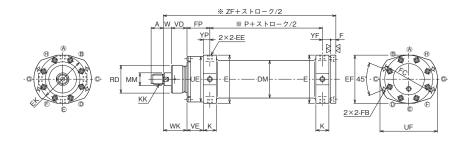
70T-2 1 FA シリーズ形式 A B ストローク - A E C

標準ポート位置 : AE 標準空気抜き位置: C





●機台との取付ボルトの強度区分はJIS8.8以上を使用してください。


## FB

テレスコシリンダ

70T-2

70T-2 1 FB シリーズ形式 A B ストローク - A E C

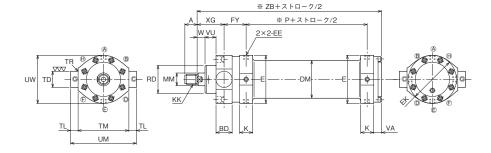
標準ポート位置 : AE 標準空気抜き位置: C



●機台との取付ボルトの強度区分はJIS8.8以上を使用してください。

#### 寸法表

| 記号<br>機種 | А  | D  | DM   | E   | EE    | EF  | EK  | F  | FB    | FC   |
|----------|----|----|------|-----|-------|-----|-----|----|-------|------|
| 10形      | 25 | 24 | φ73  | 98  | Rc3/8 | 98  | 95  | 20 | φ9    | φ120 |
| 20形      | 35 | 32 | φ105 | 138 | Rc1/2 | 138 | 136 | 30 | φ13.5 | φ170 |
| 30形      | 40 | 41 | φ125 | 158 | Rc1/2 | 165 | 161 | 35 | φ16   | φ195 |
| 40形      | 45 | 46 | φ145 | 178 | Rc3/4 | 190 | 183 | 40 | φ18   | φ225 |
| 50形      | 52 | 55 | φ165 | 196 | Rc3/4 | 205 | 200 | 45 | φ20   | φ245 |

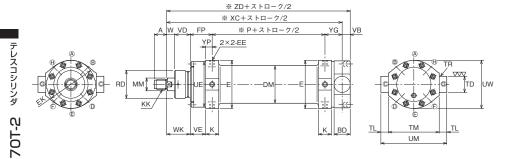

| 記号<br>機種 | FP  | НК    | K  | KK    | MM  | ЖР | RD   | UE    | UF  |
|----------|-----|-------|----|-------|-----|----|------|-------|-----|
| 10形      | 48  | φ21h9 | 26 | M24×2 | φ27 | 25 | φ59  | φ89.5 | 135 |
| 20形      | 67  | φ30h9 | 34 | M33×2 | φ38 | 35 | φ84  | φ129  | 195 |
| 30形      | 80  | φ36h9 | 42 | M39×2 | φ45 | 40 | φ100 | φ155  | 225 |
| 40形      | 93  | φ42h9 | 47 | M45×2 | φ52 | 45 | φ112 | φ177  | 260 |
| 50形      | 107 | φ49h9 | 48 | M52×2 | φ59 | 50 | φ128 | φ193  | 285 |

| 記号 機種 | VA | VC | VD | VE | W  | WK | YF | YP | ₩ ZB | ₩ ZF |
|-------|----|----|----|----|----|----|----|----|------|------|
| 10形   | 14 | 15 | 32 | 35 | 13 | 45 | 17 | 13 | 145  | 155  |
| 20形   | 21 | 20 | 43 | 50 | 17 | 60 | 23 | 17 | 200  | 215  |
| 30形   | 25 | 25 | 50 | 60 | 20 | 70 | 30 | 20 | 235  | 255  |
| 40形   | 28 | 29 | 57 | 69 | 23 | 80 | 32 | 24 | 270  | 290  |
| 50形   | 31 | 37 | 65 | 82 | 25 | 90 | 33 | 25 | 303  | 325  |

注) クッション形式 "S" の場合、※印寸法は5mm 長くなります。

標準ポート位置 : AE 標準空気抜き位置: C






注) 横置で使用する場合は、ヘッドカバー側のシリンダ質量を支えてください。(ストロークが600mm以上を目安にしてください。)

## TB

70T-2 1 TB シリーズ形式 A B ストローク - A E C

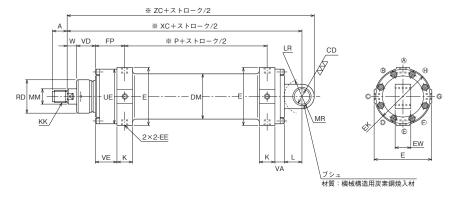
標準ポート位置 : A E 標準空気抜き位置: C



注)横置で使用する場合は、ロッドカバー側のシリンダ質量を支えてください。(ストロークが1200mm以上を目安にしてください。)

#### 寸法表

| 機種 | 記号  | А  | BD | D  | DM   | E   | EE    | EK  | FP  | FY | НК    | К  |
|----|-----|----|----|----|------|-----|-------|-----|-----|----|-------|----|
| 1  | O形  | 25 | 31 | 24 | φ73  | 98  | Rc3/8 | 95  | 48  | 43 | φ21h9 | 26 |
| 2  | 20形 | 35 | 38 | 32 | φ105 | 138 | Rc1/2 | 136 | 67  | 55 | φ30h9 | 34 |
| 3  | 80形 | 40 | 48 | 41 | φ125 | 158 | Rc1/2 | 161 | 80  | 68 | φ36h9 | 42 |
| 4  | 10形 | 45 | 58 | 46 | φ145 | 178 | Rc3/4 | 183 | 93  | 81 | φ42h9 | 47 |
| 5  | 50形 | 52 | 63 | 55 | φ165 | 196 | Rc3/4 | 200 | 107 | 93 | φ49h9 | 48 |


| 記号機種 | KK    | ММ  | ЖР | RD   | TD    | TL | TM        | TR | UE    | UM  | UW  |
|------|-------|-----|----|------|-------|----|-----------|----|-------|-----|-----|
| 10形  | M24×2 | φ27 | 25 | φ59  | φ28e9 | 20 | 100 -0.35 | R3 | φ89.5 | 140 | 95  |
| 20形  | M33×2 | φ38 | 35 | φ84  | φ35e9 | 25 | 145 -0.4  | R3 | φ129  | 195 | 135 |
| 30形  | M39×2 | φ45 | 40 | φ100 | φ45e9 | 30 | 175 0     | R3 | φ155  | 235 | 160 |
| 40形  | M45×2 | φ52 | 45 | φ112 | φ55e9 | 30 | 200 _0.46 | R3 | φ177  | 260 | 185 |
| 50形  | M52×2 | φ59 | 50 | φ128 | φ60e9 | 35 | 220 _0.46 | R3 | φ193  | 290 | 205 |

| 記号機種 | VA | VB | VD | VE | VU | W  | WK | *XC | XG  | YG | YP | ፠ ZB | ፠ ZD |
|------|----|----|----|----|----|----|----|-----|-----|----|----|------|------|
| 10形  | 14 | 16 | 32 | 35 | 21 | 13 | 45 | 150 | 50  | 32 | 13 | 145  | 166  |
| 20形  | 21 | 20 | 43 | 50 | 35 | 17 | 60 | 205 | 72  | 43 | 17 | 200  | 225  |
| 30形  | 25 | 25 | 50 | 60 | 37 | 20 | 70 | 240 | 82  | 50 | 20 | 235  | 265  |
| 40形  | 28 | 30 | 57 | 69 | 39 | 23 | 80 | 280 | 92  | 62 | 24 | 270  | 310  |
| 50形  | 31 | 32 | 65 | 82 | 47 | 25 | 90 | 315 | 104 | 68 | 25 | 303  | 347  |

注) クッション形式 "S" の場合、※印寸法は5mm長くなります。

標準ポート位置 : AE 標準空気抜き位置: C



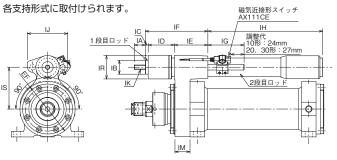


注)横置で使用する場合は、ロッドカバー側のシリンダ質量を支えてください。(ストロークが1200mm以上を目安にしてください。)

#### 寸法表

| 記号機種 | А  | CD     | D  | DM   | E   | EE    | EK  | EW                 | FP  | НК    | К  | KK    |
|------|----|--------|----|------|-----|-------|-----|--------------------|-----|-------|----|-------|
| 10形  | 25 | φ25H10 | 24 | φ73  | 98  | Rc3/8 | 95  | 28 -1              | 48  | φ21h9 | 26 | M24×2 |
| 20形  | 35 | φ35H10 | 32 | φ105 | 138 | Rc1/2 | 136 | 40 _1              | 67  | φ30h9 | 34 | M33×2 |
| 30形  | 40 | φ45H10 | 41 | φ125 | 158 | Rc1/2 | 161 | 50 <sub>-1</sub> 0 | 80  | φ36h9 | 42 | M39×2 |
| 40形  | 45 | φ55H10 | 46 | φ145 | 178 | Rc3/4 | 183 | 55 <sub>-1</sub> 0 | 93  | φ42h9 | 47 | M45×2 |
| 50形  | 52 | φ60H10 | 55 | φ165 | 196 | Rc3/4 | 200 | 63 <sub>-1</sub> 0 | 107 | φ49h9 | 48 | M52×2 |

| 記号<br>機種 | L  | LR  | MM  | MR  | <b>%</b> Р | RD   | UE    | VA | VD | VE | W  | *xc | *ZC |
|----------|----|-----|-----|-----|------------|------|-------|----|----|----|----|-----|-----|
| 10形      | 30 | R29 | φ27 | R22 | 25         | φ59  | φ89.5 | 14 | 32 | 35 | 13 | 175 | 197 |
| 20形      | 45 | R44 | φ38 | R30 | 35         | φ84  | φ129  | 21 | 43 | 50 | 17 | 245 | 275 |
| 30形      | 55 | R54 | φ45 | R38 | 40         | φ100 | φ155  | 25 | 50 | 60 | 20 | 290 | 328 |
| 40形      | 65 | R64 | φ52 | R45 | 45         | φ112 | φ177  | 28 | 57 | 69 | 23 | 335 | 380 |
| 50形      | 70 | R69 | φ59 | R50 | 50         | φ128 | φ193  | 31 | 65 | 82 | 25 | 373 | 423 |


注) クッション形式 "S" の場合、※印寸法は5mm長くなります。

801

テレスコシリンダ

70T-2

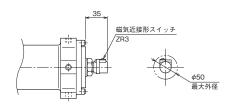
#### 準標準/テレスコロッドスイッチ付(最伸長時位置検出用)





単位:mm

#### 最大製作ストローク


| 10形 | 1300 |
|-----|------|
| 20形 | 2200 |
| 30形 | 2200 |

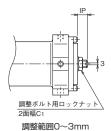
- ●検出ロッドはテレスコロッドとなっています。
- 1段目検出ロッドは、先端金具に当てしっかりと固定してください。
- スイッチは、最伸長時の検出用です。最縮時の検出は、別売のリミットルを設置してください。
- テレスコロッドの角度とスイッチの位置は左右に移動できます。(LA、LTのみ90°)
- スイッチ形式は、AX111CEが標準です。これ以外のスイッチをご使用の場合は別途ご指示ください。 ただし、AX形に限ります。(スイッチ仕様につきましては、巻末のスイッチ仕様欄を参照してください。)

| 記号<br>機種 | EF      | IA | IB     | IC | ID | ΙE  | IF  | IG | IH              | IJ     | IK      | IM | IN      | IR | IS      |
|----------|---------|----|--------|----|----|-----|-----|----|-----------------|--------|---------|----|---------|----|---------|
| 10形      | MAX.106 | 20 | 25±0.1 | 5  | 47 | 60  | 112 | 85 | (ストロークー66)/2+66 | MAX.74 | M8×1.25 | 27 | MAX.147 | 42 | 75±0.2  |
| 20形      | MAX.142 | 30 | 37±0.1 | 3  | 54 | 105 | 162 | 85 | (ストロークー86)/2+70 | MAX.86 | M10×1.5 | 35 | MAX.199 | 52 | 100±0.2 |
| 30形      | MAX.172 | 35 | 37±0.1 | 13 | 54 | 105 | 172 | 85 | (ストロークー86)/2+70 | MAX.86 | M10×1.5 | 35 | MAX.229 | 52 | 115±0.2 |

#### 準標準/リミットル®(後退端位置検出用)

CA形を除く全ての支持形式に取付けられます。



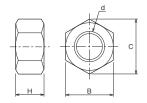

- ●テレスコシリンダ後退端位置検出用です。
- 10形~50形まで外観寸法は同一です。

#### 「リミットル」は当社の登録商標です。

#### 準標準/ストローク調整付(例LA形)

単位:mm

CA形を除く全ての支持形式に取付けられます。




#### ●調整されたストローク分だけ下記寸法が長くなります。

| LA形·LT形································· | $VD \cdot WK \cdot XS \cdot XW \cdot ZE$ | 3 |
|------------------------------------------|------------------------------------------|---|
| FA形 ···································· | VD • WK • ZE                             | 3 |
| FB形 ······                               | VD • WK • ZF                             | Ξ |
| TA形 ······                               | VU · XG · ZE                             | 3 |
| TB形                                      | VD • WK • XC • ZE                        | ) |

| 記号 機種 | C <sub>1</sub> | IP |
|-------|----------------|----|
| 10形   | 19             | 15 |
| 20形   | 24             | 18 |
| 30形   | 30             | 21 |
| 40形   | 36             | 23 |
| 50形   | 36             | 23 |

#### ロックナット



| d<br>記号 | M24×2 | M33×2 | M39×2 | M45×2 | M52×2 |
|---------|-------|-------|-------|-------|-------|
| В       | 36    | 50    | 60    | 70    | 80    |
| С       | 41.6  | 57.7  | 69.3  | 80.8  | 92.4  |
| Н       | 14    | 20    | 23    | 27    | 31    |

#### 申側シリンダカ

1段目  $F_1 = A_1 \times P \times B(N)$ 2段目  $F_2 = A_2 \times P \times B(N)$ 

引側シリンダカ

1段目  $F_3 = A_3 \times P \times \beta$  (N) 2段目  $F_4 = A_4 \times P \times B(N)$ 

A1:押側1段目有効断面積(mm2) A2:押側2段目有効断面積(mm2) A3:引側1段目有効断面積(mm2)

A4:引側2段目有効断面積(mm2) P: 作動圧力 (MPa) β: 負荷率

シリンダの実際の出力はシリンダの摺動部の抵抗・配 管および機器の圧力損失を考慮し決定する必要があり ます。

負荷率とは、シリンダに負荷される実際の力と回路設 定圧力から計算した理論力(理論シリンダ力)の比率を いい、一般に次の数値を目安値としています。

慣性力が少ない場合…60~80%

**慣性力が大きい場合…25~35%** 

本カタログの計算例は、負荷率80%で算出してあります。

#### ピストン有効断而積表

| Lハーフゖ | が回回領  | 18   |           | 単位:mm≤ |
|-------|-------|------|-----------|--------|
| 加     | 押     | 側    | <b>31</b> | 側      |
| 機種    | 1段目   | 2段目  | 1段目       | 2段目    |
| 10形   | 3117  | 1512 | 911       | 939    |
| 20形   | 6362  | 3142 | 1944      | 2007   |
| 30形   | 9503  | 4772 | 3142      | 3182   |
| 40形   | 12272 | 6107 | 3940      | 3984   |
| 50形   | 15394 | 7600 | 4825      | 4866   |
|       |       |      |           |        |

10形の複動形テレスコシリンダを設定圧力7MPaで 使用した場合押側、引側の1段目と2段目のシリンダ 力はいくらになるか求めよ。

#### <解答>

#### 押側シリンダカ(N)

1段目=設定圧力(MPa)×押側1段目ピストン有効断面積(mm2)×負荷率 =7×3117×0.8 \(\display\) 17455(N)

2段目=設定圧力(MPa)×押側2段目ピストン有効断面積(m2)×負荷率 =7×1512×0.8≒8467(N)

#### 引側シリンダカ(N)

2段目=設定圧力(MPa)×引側2段目ピストン有効断面積(mm2)×負荷率  $=7 \times 939 \times 0.8 = 5258(N)$ 

1段目=設定圧力(MPa)×引側1段目ピストン有効断面積(mm2)×負荷率 =7×911×0.8 \(\pi 5102(N)

#### <例題>

複動形テレスコシリンダを使用して、設定圧力7MPa で、引側1段目のシリンダカが10000Nを必要とす る場合、何形を選定したらよいか。またその時の押側、 引側の1段目2段目に対するシリンダ力を求めよ。

#### <解答>

ピストン有効断面積 (mm²) = シリンダカ(N)÷負荷率 設定圧力(MPa)

ピストン有効断面積表のロッドカバー側1段目から 1786より大きい方のシリンダ内径を選ぶと20形が 選定できる。

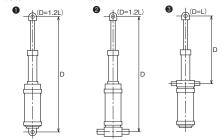
#### 各シリンダカ

押側 1段目シリンダカ=7×6362×0.8≒35627N 2段目シリンダカ=7×3142×0.8 = 17595N

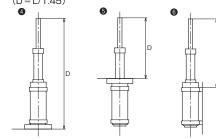
引側 2段目シリンダカ=7×2007×0.8 = 11239N 1段目シリンダカ=7×1944×0.8≒10886N

#### 座屈表の見方

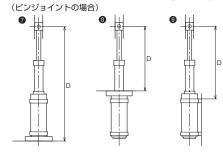
テレスコシリンダの機種による使用最大荷重の求め方


- 1. テレスコシリンダの使用状態が次項の●~9のど の支持状態であるか決定する。
- 2. 支持状態が決まればそれに合わせて、Lの値を求める。
- 3. 座屈表において、L値とテレスコシリンダの機種か ら使用最大荷重を求める。

テレスコシリンダの機種による最大ストロークの求め方


- 1. テレスコシリンダの使用状態が次項の●~9のど の支持状態であるか決定する。
- 2. 座屈表において、使用最大荷重とテレスコシリンダ の機種からL値を求める。
- 3. 支持状態が決まれば、L値よりストロークが求まる。

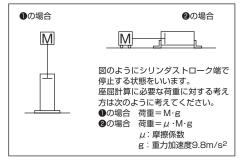
#### テレスコシリンダの支持状態


●両端ピンジョイントの場合

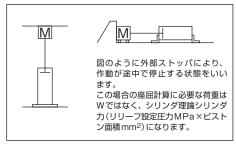


●テレスコシリンダ固定、ロッドエンド自由の場合 (D = L/1.45)




●テレスコシリンダ固定、ロッドエンドガイド(D=1.6L) (ピンジョイントの場合)

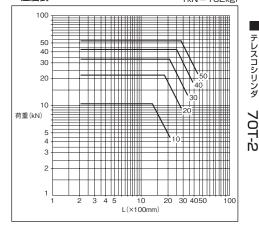



#### ピストンロッドの座屈についての注意点

ピストンロッドの座屈計算に入る前に、シリンダの止め 方について検討する必要があります。シリンダをストッ プする方法には、シリンダ本体のストローク端で止める シリンダストップ方式と、外部ストッパで止める外部ス トップ方式があり荷重に対する考え方がかわります。

#### ●シリンダストップ方式による荷重の考え方




#### ●外部ストップ方式による荷重の考え方

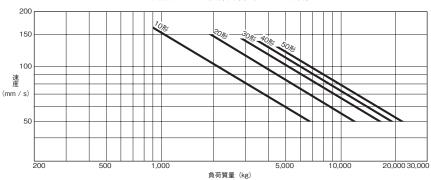


#### ● 座屈表

1kN = 102kgf

**レスコシリ** 




Ė

# スコシリンダ 70T-2

レスコシリ

#### クッションの性能特性からみた負荷質量に対するシリーズ別の速度線図

負荷質量-凍度線図(水平送りの場合)



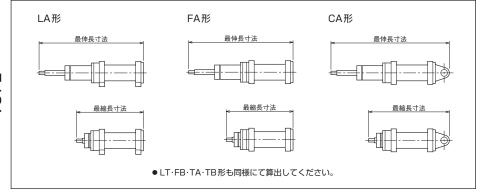
上表は、押側等速回路でのスピードの目安です。 非等速回路では、2段目ピストンロッドのスピードが上表になります。引側の場合は、1段目 ピストンロッドのスピードで負荷質量は1.5倍まで可能です。

油圧シリンダを選定する場合は、負荷質量と速度の関係が重要なポイントになります。 上表は、テレスコシリンダに内蔵されたロッドカバー側のクッションの性能特性からみた速度線図です。

#### シリンダストロークと最縮長寸法の計算

テレスコシリンダの最伸長寸法より、シリンダストロー クと最縮長寸法が算出できます。

#### 計算式


(最伸長寸法-固定長さ)÷3+(固定長さ)=最縮長寸法(mm) (最縮長寸法-固定長さ)×2=シリンダストローク(mm)

### 固定長さ

|        |             |     | -   | =177 • 1111111 |
|--------|-------------|-----|-----|----------------|
| 支持形式機種 | LA·LT·FA·TA | FB  | ТВ  | CA             |
| 10形    | 170         | 180 | 191 | 222            |
| 20形    | 235         | 250 | 260 | 310            |
| 30形    | 275         | 295 | 305 | 368            |
| 40形    | 315         | 335 | 355 | 425            |
| 50形    | 355         | 377 | 399 | 475            |

掛位·mm

固定長さとは、シリンダが縮んだ状態の最大外形寸法からスト ローク/2を引いた値です。



#### シリンダ速度によるポート径の確認

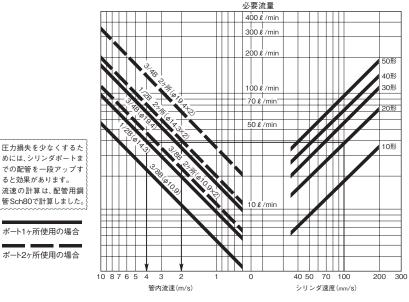
シリンダ速度は、シリンダ内に流入する油量により定 <例題> まるので標準ポート径で使用できるかどうか確認する 複動形テレスコシリンダで、20形・シリンダ押側速 ことが必要です。

シリンダの速度Vは、次の式により求まります。

 $V = 1.67 \times 10^4 \times Qc/A (mm/s)$ 

Qc:シリンダ内に供給する油量(ℓ/min) A: ピストン有効断面積(mm²) 押側1段目 引側2段目

下図は、複動形テレスコシリンダの各サイズについて、 速度と必要流量の関係、および各ポート径について必 になる。また、引側ではポートを2カ所使用すること 要流量と管内流速の関係をグラフ化したものです。


度100mm/sのとき、標準ポート径で使用できる か、また、管内速度は何m/sになるか。また、引側 100mm/sのときはどうか。

#### <解答>

グラフより、シリンダ速度100mm/sと20形との交 点から横軸平行に辿り、ポート1/2B(複動形テレスコ シリンダ、20形の標準ポート径)と結ぶ。

ポート径とシリンダ速度・形式との交点が使用範囲内 に入っているので、使用可能である。また、ポート径 の交点から縦軸を辿って管内流速を見ると、4.0m/s により、2.0m/sになる。

#### シリンダ速度ー必要流量ー管内流速関係図表

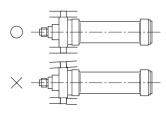


#### シリンダの最低必要油量 単位: 0

ると効果があります。

| 機種  | 最低必要油量                           |
|-----|----------------------------------|
| 10形 | 1.39×10-3×ストローク(mm)              |
| 20形 | 2.78×10 <sup>-3</sup> ×ストローク(mm) |
| 30形 | 3.98×10 <sup>-3</sup> ×ストローク(mm) |
| 40形 | 5.23×10 <sup>-3</sup> ×ストローク(mm) |
| 50形 | 6.65×10 <sup>-3</sup> ×ストローク(mm) |
|     |                                  |

● シリンダの最低必要 油量とはシリンダの 最大ストローク時に シリンダの供給側の 油量から排出側の油 量を差し引いた油量 です。


#### テレスコシリンダポート径

| シリーズ | 10形   | 20形   | 30形   | 40形   | 50形   |
|------|-------|-------|-------|-------|-------|
| ポート径 | Rc3/8 | Rc1/2 | Rc1/2 | Rc3/4 | Rc3/4 |

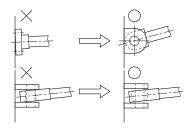
- ●管内流速7m/s以内を使用範囲としています。 一般的に管内流速7m/sを超える場合は、配管抵抗 が高くなり、圧力損失が多くなるため、シリンダ作 動時の出力が少なくなり速度が遅くなります。
- ●引側6MPaで使用する際、ヘッドカバー側の排出流N 速は3.5m/s以内を範囲としてください。 引側14MPaの場合では、5.5m/s以内で可。

#### 使用上の注意点

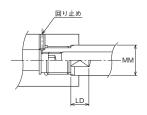
- 1段目のラムチューブ端に荷重をかけないでくださ い。誤動作の原因になります。
- ●ピストンロッドに横荷重をかけるような使用は避け てください。
- 誤作動およびシリンダの破損の原因になりますので、 横荷重がかかる場合はガイドを設けるか、先端ねじを 保護する等の対応が必要です。別途ご相談ください。
- ●ピストンロッドの軸心と負荷の運動方向との芯出し を正確にしてください。不完全な芯出しは、誤作動 およびシリンダの破損の原因になります。
- ●TA形·TB形·CA形の取付けでは、揺動軸心と相手 側機台の芯出しも行ってください。
- ●TA形·TB形の取付けブラケットは、下図のように 正しく取付けてください。



- ●取付部は、シリンダ推力に対して振れが生じないよ う十分な剛性をもたせてください。
- ●取付けに使用するボルトの強度区分は、JIS8.8以 上のものを使用し、取付け時のトルクは、下表を参 照してください。


不完全な締付けは、ボルトのゆるみや破損の原因と なります。

#### 締付トルク表


単位:N·m

| ねじ径    | 強度<br>区分 | M8 | M10 | M12 | M14 | M16 | M18 | M20 | M22 | M24  |
|--------|----------|----|-----|-----|-----|-----|-----|-----|-----|------|
| 締 付トルク | 10.9     | 36 | 72  | 125 | 198 | 305 | 420 | 590 | 800 | 1020 |
|        | 8.8      | 25 | 51  | 89  | 141 | 216 | 290 | 410 | 560 | 720  |

- ●先端金具と負荷との連結部は、ピストンロッドに偏 荷重がかからないようにしてください。
- ●先端金具は、基本的に1山先端金具(T先)、1山先端 金具球面軸受付き(S先)、2山先端金具(Y先)を推 奨します。その他の形状の先端金具を使用する場合 は、ご相談ください。



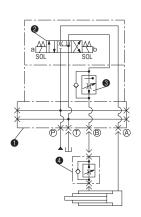
- ●ピストンロッドは、中空のパイプで作られています ので、先端金具取付けの際、回り止めは、必ず図の ように、ねじ先端のインロー部 (4mm) に施行して ください。
- ●横荷重がかかるおそれがある場合は、ねじ首部保護 のため、図のようにロッドをインローにしてください。 その際、スパナ掛け部LD寸法およびW寸法をご指 定ください。(準標準)



#### 配管上の注意点

- ●ロッド側をメータアウトで使用する場合は、ロッド 側に使用する配管(ゴムホース等)の耐圧力は、ヘッ ド側最高使用圧力の3倍以上としてください。
- ●配管内は、あらかじめフラッシングを行ってから配 管してください。
- ●ゴムホースで接続する場合は、規定の半径以内に曲 げないでください。
- ●配管途中に空気溜めができないようにしてください。

#### 等速回路について


- ●70T-2シリーズは引側の受圧面積が1段目、2段目 共ほぼ等しくなっています。そのためロッド伸張時 は出側の油量をメータアウト制御、ロッド収縮時は 入側の油量をメータイン制御することにより、ほぼ 等速で順次作動させることができます。
- ●流量制御弁は必ず圧力保償付のものをご使用くださ
- ●ソレノイドバルブTポートから背圧が加わる可能性 がある場合、Tポートチェックバルブまたは、Bラ インパイロットチェックバルブをご使用ください。
- ●バルブとテレスコシリンダとの配管が長い場合で、 ロッド伸張側中間停止を行う時(特に1段目)、1~ 数mmロッドが戻ることがあります。この場合、ヘッ ド側圧力を減圧するか、メータアウトの流量調整弁 をシリンダの近くに接続してください。

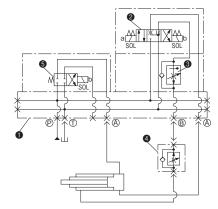
- ●ロッド収縮時において油圧回路の入口(Pポート)と 出口(Bポート)の圧力差が1MPa以上無い場合、等 速作動しないことがありますのでご注意ください。 注)使用する流量調整弁により若干異なります。
- ●ロッド収縮速度を速くするには、Tポート配管を太 くし、背圧を下げると効果があります。また、バイ パス回路を設けるのも効果があります。
- ●押側作動時のショックを和らげたい場合、減圧弁付 の回路を使用してください。
- ●ロッド上向きで等速作動をする場合、基本速度制御 回路では下降時の速度制御はできませんので、ヘッ ド側にカウンタバランス弁を設け、背圧を立ててく ださい。

#### 回路構成例

#### 基本速度制御

順次等速作動で、速度制御する基本回路です。




#### 機器構成

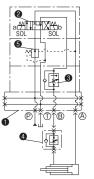




#### バイパス回路付速度制御

基本速度制御回路の引側にバイパス回路を設け、引側時のシリ ンダのスピードアップを図る速度制御回路です。




#### 機器構成

|     |              | _ |    |                 |
|-----|--------------|---|----|-----------------|
| No. | 名 称          | N | 0. | 名 称             |
| 0   | マニホールド       | • | •  | 流量調整弁(圧力保償付)    |
| 2   | ソレノイドバルブ     | ( | •  | ソレノイドバルブ(バイパス用) |
| 3   | 流量調整弁(圧力保償付) | _ |    |                 |

#### 減圧弁付速度制御

基本速度制御回路のPポートとソレノイドバルブの間に減圧 弁を設け、ヘッドカバー側に必要以上の圧力をかけない機能を 追加した速度制御回路です。

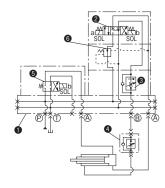
- ●ロッド側圧力が7MPa以上15MPa以下のときに使用します。
- ●押側作動時のショックレス回路としても使用できます。



名 称 ● 流量調整弁(圧力保償付)

6 減圧弁

#### 機器構成


| No. | 名        | 称  |  |
|-----|----------|----|--|
| -   | <br>- 11 | 12 |  |

- 2 ソレノイドバルブ
- ③ 流量調整弁(圧力保償付)

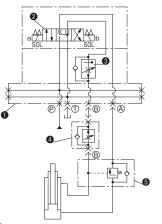
#### バイパス回路・減圧弁付速度制御

バイパス回路と減圧弁を設けた速度制御回路です。

- ●ロッド側圧力が7MPa以上15MPa以下のときに使用します。
- ●押側作動時のショックレス回路としても使用できます。



#### 機器構成


| No. | 名 称                      |  |  |  |  |
|-----|--------------------------|--|--|--|--|
| 0   | マニホールド                   |  |  |  |  |
| 2   | ソレノイドバルブ<br>流量調整弁(圧力保償付) |  |  |  |  |
| 8   |                          |  |  |  |  |

| No. | 名 称             |
|-----|-----------------|
| 4   | 流量調整弁(圧力保償付)    |
| 6   | ソレノイドバルブ(バイパス用) |
| 6   | 減圧弁             |

#### カウンタバランス弁付速度制御

ヘッド側にカウンタバランス弁を設けた速度制御回路です。

●ロッド上向きで等速作動を行う場合に使用します。



#### 機器構成

| No. 名 称 |  |
|---------|--|
|---------|--|

- **1** マニホールド
- 2 ソレノイドバルブ 3 流量調整弁(圧力保償付)
- 名 称 流量調整弁(圧力保償付) **⑤** カウンタバランス弁